
VLSI VAX

Micro-architecture

May 1988

Bob Supnik

For Internal Use Only

Semiconductor Engineering Group

Contents

• The macro-architectural issues

• The canonical micro-architectural model

• MicroVAX

• Improving performance

• CVAX and Rigel

• Summary

VLSI VAX Micro-architecture

The VAX Architecture

• The VAX architecture is a complex instruction set computer

(CISC) characterized by:

– Irregular instruction format (1 to 50+ bytes)

– Large instruction set (304 instructions)

– Multiple addressing modes (21)

– Demand paged virtual memory management

– Few hardware limitations on software

• TTL/ECL implementations have typically been characterized

by:

– Complex microcode-based control

– Large control store (400k bits to 2200k bits)

– Redundant facilities (microcoded and hardware floating

point)

– Inbuilt console I/O

– Complex memory subsystem (large TB, large cache)

• These implementation characteristics pose severe problems for a

single chip VLSI implementation.

VLSI VAX Micro-architecture

The MicroVAX Subset

• Generically, the MicroVAX subset is a set of hardware/ mi-

crocode/ software/ performance tradeoffs intended to facilitate

VLSI implementation.

• Firmware to software tradeoffs:

– 59 instructions implemented in macrocode rather than mi-

crocode: character string, decimal, EDITPC, CRC, octa-

word, h-floating

– Console implemented in macrocode rather than microcode

• Firmware to hardware tradeoffs:

– Hardware floating point only

• Performance tradeoffs:

– Small translation buffer, fully associative, fast replacement

– No cache or small cache

VLSI VAX Micro-architecture

The Canonical VAX Micro-model

• Most VAX implementations, including the 78X, 750, 730, V-11,

MicroVAX, CVAX, Rigel, and Nautilus, have the same basic

block structure:

– I(nstruction) box

– E(xecution) box

– M(emory) box

– Microsequencer/ control store

– Bus interface unit

– Interrupts

– Memory subsystem

– Console subsystem

VLSI VAX Micro-architecture

I Box

• Parses and decodes instruction stream using internal state and

prefetch queue data fetched by the M Box and BIU.

• Gives “VAXness” to the rest of the chip by directing the Microse-

quencer through specifier evaluation and instruction execution.

• Supplies parameters to specifier evaluation.

• Formats I-stream data for specifier evaluation and instruction

execution.

VLSI VAX Micro-architecture

E Box

• Contains main execution data path:

– Register file

– ALU and shifter

• Under microcode control, performs:

– Specifier evaluation

– Instruction execution

– Interrupts and exceptions

– Memory management processing

• Maintains PC, backup PC, PSL, GPRs, RLOG, and other ar-

chitecturally specified state.

VLSI VAX Micro-architecture

M Box

• Performs address translation and access checking.

• Decodes and initiates memory references, TB accesses.

• Maintains address registers.

• Performs instruction prefetching when idle.

VLSI VAX Micro-architecture

Microsequencer/ Control Store

• Forms next micro-word address and performs micro-word se-

quencing and access.

• Decodes and selects micro-branch conditions.

• Evaluates requests and initiates micro-traps.

• Maintains micro-stack and pointer.

VLSI VAX Micro-architecture

BIU

• Controls DAL and other external interfaces pins.

• Controls DAL latches and rotators for proper positioning and

formatting of incoming and outgoing data.

• Cooperates with M Box in processing of unaligned data.

• Provides autonomous operation on selected I/O functions.

VLSI VAX Micro-architecture

Other

• Interrupt section responds to external hardware and internal

software interrupt requests.

• Memory subsystem provides connection of processor to external

storage (memory and I/O).

• Console subsystem provides diagnostic and control interface to

entire system.

• Note: Console subsystem ise external in VLSI VAXen and will

not be discussed.

VLSI VAX Micro-architecture

Canonical VAX Problems

• All VAX implementations must wrestle with thorny implemen-

tation problems posed by the architecture, including:

– Variable length instructions

– Unaligned data

– Virtual memory management

– Instructions with multiple destinations

– Instructions with complex algorithms

– Exceptions

– Clocking and stalls

• It is interesting to note that there is no reasonable relationship

between the difficulty of implementing a feature and its impor-

tance.

VLSI VAX Micro-architecture

MicroVAX Overview

• MicroVAX was the first single chip implementation of the VAX.

Its characteristics included:

– Single chip MicroVAX subset CPU (175 instructions) plus

companion floating point unit (70 instructions)

– ZMOS process (3u drawn, NMOS, double level metal)

– 125,000 transistors, 353 mils x 358 mils

– 200ns microcycle, 400ns I/O cycle

– 8 entry TB, no cache

– 1600 x 39b control store

– PG - 2/84, LR - 3/85, FRS - 5/85

• MicroVAX implemented a simple external interface:

– Multiplexed data and address bus (DAL)

– Address and data strobes (AS, DS)

– Byte masks for masked writes (BM<3:0>)

– Cycle status for I/O differentiatiion (CS<2:0>, WR)

– DMA request and grant (DMR, DMG)

• MicroVAX drew heavily on the only VLSI full VAX (V-11) for its

micro-architectural inspiration (E Box, micro-word, clocking).

VLSI VAX Micro-architecture

MicroVAX I Box

• Principal function: prefetch, parse, and decode instructions.

• Prefetch queue:

– 8 bytes (2 aligned longwords)

– Maximum of 4 bytes retired per microcycle

• Instruction data register:

– Data link from I Box to E Box

– Automatically loaded for simple conditional branches, byte/

word displacements, short literals

– Manually loaded for complex conditional branches, longword

displacements, immediates, absolute addresses

• Decode logic:

– Decode PLAs for exceptions, instructions, specifiers

– Initial decode PLA (IPLA) to supply instruction parameters

to specifier flows

• Control registers:

– Opcode register

– Access type/ data length register

– Current GPR register

VLSI VAX Micro-architecture

MicroVAX Instruction Decode

initial instruction decode

|

+---------------+---------------+

| | |

exception direct first

dispatch execution specifier

dispatch decode

|

+---------------+

|

next specifier decode

|

+---------------+

| |

execution second

dispatch specifier

decode

|

+---------------+

|

execution

dispatch

VLSI VAX Micro-architecture

MicroVAX I Box Dispatches

• Exception dispatches:

– VAX trap (divide by zero, subscript)

– Interrupt

– Trace trap

– Prefetch exception (no data available)

– Note: Trap, interrupt dispatch inhibit T bit update

– Note: Initial instruction decode (IID) can only happen once

• Direct execution dispatches:

– Instructions with no specifiers and simple branches

– FD prefix

– PSL<fpd> set

– Note: FD and FPD interaction

VLSI VAX Micro-architecture

I Box Dispatches, continued

• Specifier dispatches:

– Short literal

– Register

– Indexed

– Register deferred

– Autodecrement

– Autoincrement

– Immediate

– Autoincrement deferred

– Absolute

– Byte/ word displacement and relative

– Byte/ word displacement and relative deferred

– Longword displacement and relative

– Longword displacement and relative deferred

– Note: Separate longword dispatch due to 4 bytes per cycle

limit on prefetchq queue

VLSI VAX Micro-architecture

MicroVAX Decode Flow

EXAMPLE: ADDL3 R4, l^disp(R5), (R6)+

initial instruction decode --> first spec decode

W[0] := GPR[Rn] ! Flow for first spec

next specifier decode --> second specifier decode

IDR := IB.LONG and case ! Flow for second spec

VA := GPR[Rn] + IDR

W[2] := MEM(VA)

next specifier decode --> execution dispatch

W[0] := W[0] + W[2] ! Execution

microcode dispatch to write destination

VA := GPR[Rn] ! Flow for third spec

GPR[Rn]:= GPR[Rn] + 4

MEM(VA):= W[0] ! End of instruction

VLSI VAX Micro-architecture

MicroVAX E Box

• Principal function: Execute VAX macro-instructions.

• Register file:

– 15 single ported general purpose registers (GPR’s): R0 - R14

– 12 single ported temporary registers (T’s): IS, P0BR, P1BR,

SBR, SISR, PSL, etc.

– 7 dual ported working registers (W’s): microcode tempo-

raries

• Program counter:

– Architectural PC (R15)

– Backup PC, loaded at IID from PC, for exception recovery

– PC adder, for incrementing PC during instruction parse

• Constant generator:

– Literal constants from micro-word

– Fixed constants (0, 1, 4)

– State dependent constants (KDL, SEXTN)

VLSI VAX Micro-architecture

MicroVAX E Box, continued

• SC/Q register:

– Working register (W7)

– Shift counter to control barrel shifter

– Multiplier/quotient register

– Case generation register

• Arithmetic/ logical unit (ALU):

– 32b arithmetic and logic function unit

– Condition code outputs for 8b, 16b, 32b results

• Barrel shifter:

– 64b in, 32b out funnel shifter

– Right shift in hardware

– Left shift by ‘32-n’ right shift

VLSI VAX Micro-architecture

MicroVAX E Box, continued

• Condition code logic:

– ‘Raw’ ALU condition codes for microcode testing

– Architecturally defined PSL condition codes

– Instruction specified condition code ‘map’ raw condition

codes to architecturally specified condition codes

– Override for developing multi-word condition codes

• Conditional branch logic:

– Maps opcode against ALU/ PSL condition codes

– Generates ‘branch taken’ for conditional update of PC

• State logic:

– Microcode settable/ testable flags

– Half are global, half are cleared at IID

• Register logging stack:

– Records autoincrement/ autodecrement modifications to

GPRs

– Used in exception recovery

– Cleared at IID

VLSI VAX Micro-architecture

MicroVAX M Box

• Principal function: Address translation and external I/O.

• Address registers:

– VA - address register for data

– VA’ - backup address register for data, autoincrements

– VIBA - address register for instructions, autoincrements

• Length check logic:

– SLR, P0LR, P1LR - architecturally specified length registers

– Length comparator

– Status output - only tested on TB miss

• Translation buffer:

– Tag store (CAM) looks up addresses, fully associative

– Data store (PTEs) holds corresponding PTEs

– Management algorithm is true LRU

VLSI VAX Micro-architecture

MicroVAX M Box, continued

• Access check logic:

– Validity check (PTE.V # 0) and micro-trap

– Access (privilege) check and micro-trap

– M = 0 check and micro-trap

– Note: probe vs memory request

– Note: read vs read check, write vs write check

• Unaligned logic:

– Checks for data transfer across longword boundary

– Breaks transfer into two transfers with proper data rotation

and latching

• Cross page logic:

– Checks for data transfer across page boundary

– Initiates micro-trap for proper access check

• Data length logic - drives data length on DAL.

• Micro-trap and abort logic.

VLSI VAX Micro-architecture

Control Store

• Principal function: control memory for chip.

• 1600 words x 39b control store.

• 25b of data path control, in nine formats:

– Basic (ALU)

– Shift (shifter)

– Constant (ALU + microcode constant)

– Special (state twiddling)

– Mem req (external I/O)

– MXPR (internal I/O)

– F Box transfer (FPU I/O)

– F Box execute (not used)

– Spare (integer multiply/divide)

Too many! Decoding is a nightmare.

• 14b of sequencing control, in two formats:

– Jump

– Branch (conditional or case)

VLSI VAX Micro-architecture

Microsequencer

• Principal function: sequence access of micro-words from control

store.

• Provides multiple access modes:

– Absolute next address

– Relative next address (signed offset)

– Sequential next address (micro-PC + 1)

– Conditional branch

– Case branch

– Micro-subroutine and return

– Externally generated address (test mode)

• Maintains micro-PC (11b), micro-stack (8 entries).

• Mediates and generates micro-traps:

– M Box - TB miss, ACV/TNV, M = 0, cross page

– E Box - integer overflow

– I Box - reserved opcode

– BIU - floating point error, DAL error

VLSI VAX Micro-architecture

BIU

• Principal function: control external I/O.

• Sequences external I/O functions:

– Data and interrupt vector read, instruction prefetch

– Data write with overlap (write and run)

– FPU transfer

– DMA request and grant

• Controls data formatting:

– Write data rotators

– Read data rotators, latches, zero extender

– Byte mask pins

VLSI VAX Micro-architecture

Interrupts and Clocks

• Interrupt logic mediates external and internal interrupts:

– External hardwired interrupts - HALT, PWRFL

– External vectored interrupts - IRQ<3:0> = IPL<17:14>

– Interval timer interrupt and disable flag - ICCS<6>

Internal software interrupts - SISR<15:1> = IPL<0F:01> - are

implemented entirely in microcode.

• Clock logic provides master clocks for all chip logic:

– Divide by two logic for internal master clock

– Clock generators for 8 two phase internal clocks

– Reset and synchronization logic

Too complicated!

VLSI VAX Micro-architecture

Improving Performance

• MicroVAX, like the 11/780, runs at about 500,000 VAX instruc-

tions per second:

– Average 10 microcycles per macro-instruction

– 200ns microcycles

– Average macro-instructions is 2.0 microseconds

• To improve performance, there are two, and only two, techniques

that can be tried:

– Shorten the microcycle

∗ by improving technology

∗ by pipelining micro-instructions

– Reduce the number of microcycles (ticks) per instruction

(tpi)

∗ by improved macro-level parallelism

∗ by piecemeal improvement

VLSI VAX Micro-architecture

Faster Microcycles: Technology

• There are four critical loops in a VAX implementation:

– The E Box loop (register read, ALU, register write)

– The I Box loop (data in, decode, micro-address out)

– The Microsequencer loop (control store access, next address

decode)

– The TB/cache loop (address out, translation, access, data

in)

• In MicroVAX, each of these loops is balanced around a 200ns

period.

• Each generation of technology provides approximately 30% faster

gates.

• Therefore, successive generations of VLSI VAXen can speed up

by 30% on technology alone.

Can’t we do better than that?

VLSI VAX Micro-architecture

Faster Microcycles: Pipelining

By pipelining the E Box microcycle, micro-instruction through-

put can be dramatically increased, thereby reducing the apparent

microcycle time.

unfolded (1X):

read ALU write

+------+------+------+

half folded (1.5X):

read ALU write

+------+------+------+

read ALU write

+------+------+------+

fully folded (3X):

read ALU write

+------+------+------+

read ALU write

+------+------+------+

read ALU write

+------+------+------+

VLSI VAX Micro-architecture

Micro-pipelining, continued

• Micro-pipelining impacts entire micro-architecture:

– I Box must be pipelined to meet apparent faster microcycle

– Microsequencer and control store must get faster to meet

apparent faster microcycle

– TB/cache must get faster to meet apparent faster microcycle

– Control becomes much more complex throughout due to for-

mal pipeline controls, stalls, etc

– Microcode becomes much more complex due to longer micro-

branch latencies, pipeline side effects, etc

• Micro-pipelining is not a perfect win:

– Segments are not equal length, effective microcycle time de-

termined by longest segment

– Pipeline introduces some inefficiencies and stalls

• Micro-pipelining provides the biggest ‘multiplier’ for improving

VAX performance; but where do we go after fully folding?

VLSI VAX Micro-architecture

Reduced TPI: Pipelining

• The high TPI of most VAXen is due to two primary factors:

– Serial decoding of specifiers

– Lengthy execution times of complex instructions (CALLx,

RET, etc)

• Increasing macro-level parallelism could reduce apparent TPI by:

– Parallel decoding of multiple specifiers, or

– Overlap of specifier decoding with instruction execution

• However, the VAX architecture is highly resistant to macro-

level parallelism:

– Variable length specifiers make parallel decoding of specifiers

difficult and expensive

– Interlocks within and between instructions make overlap of

specifiers with instruction execution difficult and expensive

• Most (but not all) VAX architects feel that the costs of macro-

level parallelism outweight the benefits; hence, this approach is

not being actively pursued.

VLSI VAX Micro-architecture

Reduced TPI: Nibbling

• If we cannot get a radical reduction in TPI, we can nonetheless

get small reductions via piecemeal improvements to the micro-

architecture.

• One area for improvement is the memory subsystem. Improve-

ments can include:

– Enlarged translation buffer

– On chip cache

– Multi-level cache

– Multi-word I/O

– Write and run (write pipelining)

– Multiple write buffers

– Read and run (read pipelining)

– Hits under misses

• Other areas for improvement:

– Optimized (via special case) specifier decoding

– Better hardware support or microcode algorithms for long

instructions

VLSI VAX Micro-architecture

CVAX

• Second generation VLSI VAX single chip microprocessor:

– MicroVAX subset CPU (175 instructions) plus companion

floating point unit (70 instructions)

– CMOS-1 process (2u drawn, CMOS, double level metal)

– 175,000 transistors, 390 mils x 375 mils

– 80ns - 100ns microcycle, 160ns - 200ns I/O cycle

– 28 entry TB, 1kb cache

– 1600 x 41b control store

• Performance goal is 2.5X - 3.0X current generation:

– 1.5X from technology improvements

– 1.5X from micro-architectural pipelining

– Remainder from improved memory subsystem

VLSI VAX Micro-architecture

CVAX, continued

• Faster microcycle – technology:

– CMOS-1 process substantially faster than ZMOS (2ns repre-

sentative gate delay vs 3ns)

– Lower power permits fuller use of large devices for speed-

critical paths

• Faster microcycle – micro-pipelining:

– Half folded micro-pipeline

– Register file writes through, thereby allowing writes under

reads with no explicit bypass logic

– RAS/CAS addressing of control store provides same micro-

branch latency as in MicroVAX (one cycle)

– Pipeline in I Box adds one cycle to macro-branch latency

• Reduced TPI – better memory subsystem:

– Enlarged TB (28 entries vs 8) for reduced misses

– On chip single cycle cache (1kb, two way associative, 8 byte

block)

– Off chip two cycle cache (64kb+, direct map)

– Multi-word read for on chip cache fill

VLSI VAX Micro-architecture

CVAX, continued

• CVAX I Box is based on Nautilus rather than 780:

– I Box is an autonomous state machine which parses the in-

struction stream based on its own state data

– I Box parses all specifiers using one generic (parameterized)

set of specifier flows

– I Box and E Box are synchronized by a single directive, DE-

CODER NEXT

– Prefetch queue is 12 bytes (3 aligned longwords), allowing

retirement of up to 6 bytes per microcycle

– Instruction data register automatically loaded in most cases

(only immediates and complex branch displacements are

done manually)

• CVAX E Box implements half folded micro-pipeline:

– All registers have extra (write) port

– Writes are executed under reads, with bypass through the

register file

– 4 extra T registers for per process stack pointers

– SC and Q are separate registers

– PSL is maintained in hardware

• CVAX M Box is like MicroVAX:

– 28 TB entries

– Not last used (NLU) replacement algorithm

VLSI VAX Micro-architecture

CVAX, continued

• CVAX control store and Microsequencer are simplified:

– 1600 x 41b control store

– Five (rather than nine) data path formats

– Two sequencing formats

– Paged rather than signed displacement addressing

– Case rather than conditional branching

– 8 way rather than 16 way cases

• CVAX BIU provides increased flexibility:

– On chip 1kb single cycle cache

– Multi-word reads for cache fills

– Externally requested cycle retry

– Optional data parity

– Much more efficient FPA protocol

• Improvements in interrupts and clocking:

– Two more hardwired interrupts (CRD, MEMERR)

– Partial hardware implementation of software interrupts

– Externally generated four phase overlapping clocks

VLSI VAX Micro-architecture

CVAX Decode Flow

EXAMPLE: ADDL3 R4, l^disp(R5), (R6)+

decoder next --> specifier decode

W[Sn] := GPR[Rn] ! Flow for specifier

! Sn = 0, Rn = 4

decoder next --> specifier decode (IDR loaded)

VA := GPR[Rn] + IDR ! Flow for specifier

W[Sn] := MEM(VA) ! Sn = 2, Rn = 5

decoder next --> specifier decode

VA,W[Sn]:= GPR[Rn] ! Flow for specifier

GPR[Rn]:= GPR[Rn] + 4 ! Sn = 4, Rn = 6

decoder next --> execution dispatch

W[0] := W[0] + W[2] ! Execution

MEM(VA):= W[0] ! End of instruction

VLSI VAX Micro-architecture

Rigel

• Third generation VLSI VAX single chip microprocessor:

– MicroVAX subset CPU (175 instructions) plus companion

floating point unit (70 instructions)

– CMOS-2 process (1.5u drawn, CMOS, double level metal)

– 325,000 transistors, tbd mils x tbd mils

– 30 ns - 40ns microcycle, 90ns - 120ns I/O cycle

– 64 entry TB, 2kb cache

– 1700 x 50b control store

• Performance goal is 6X - 8X current generation:

– 2X from technology improvements

– 3X from micro-architectural pipelining

– Remainder from improved memory subsystem

VLSI VAX Micro-architecture

Rigel

• Faster microcycle – technology:

– CMOS-2 process substantially faster than ZMOS (1.5ns rep-

resentative gate delay vs 3ns)

– Lower power permits fuller use of large devices for speed-

critical paths

• Faster microcycle – micro-pipelining:

– Fully folded micro-pipeline

– Register file writes through, thereby allowing writes under

reads with just one level of explicit bypass logic

– Micro-branch latency increases to three cycles

– Pipeline in I Box adds yet another cycle to macro-branch

latency

• Reduced TPI – better memory subsystem:

– Enlarged TB (64 entries) for reduced misses

– On chip single cycle cache (2kb, direct map, 8 byte block)

– Off chip three cycle cache (128kb, direct map, 16 byte fill

size, 64 byte block size)

– Multi-word read for all cache fills

– Multi-word writes for burst output situations

– Read and run pipeline

VLSI VAX Micro-architecture

Rigel, continued

• Rigel I Box is based on CVAX/ Nautilus rather than 780:

– I Box is an autonomous state machine which parses the in-

struction stream based on its own state data

– I Box parses all specifiers using one generic (parameterized)

set of specifier flows

– I Box and E Box are synchronized by a single directive, DE-

CODER NEXT

– Prefetch queue is 16 bytes (4 aligned longwords), allowing

retirement of up to 10 bytes per microcycle

– Instruction data register automatically loaded in all cases

• Rigel E Box implements fully folded micro-pipeline, plus read

pipelining:

– All registers have extra (write) port

– MD (working) registers have second write port plus valid bits

for synchronization

– Bypass around ALU/ shifter and through register file

– 8 extra T registers for per process stack pointers and memory

management length registers

– MD7 is separate register, SC and Q are again combined

– PSL is maintained in hardware

• Rigel M Box is simplified:

– 64 TB entries

– Not last used (NLU) replacement algorithm

– Length checks implemented in microcode rather than in

hardware

VLSI VAX Micro-architecture

Rigel, continued

• Rigel control store and Microsequencer are simplified:

– 1600 x 50b control store

– Four data path formats

– Two sequencing formats

– Paged rather than signed displacement addressing

– Case rather than conditional branching

– 8 way rather than 16 way cases

• BIU provides even more flexibility:

– On chip 2kb single cycle cache

– Multi-word reads for cache fills

– Multi-word writes for high output

– Externally requested cycle retry

– Mandatory data parity

– Much more efficient FPA protocol

• Improvements in interrupts and clocking:

– Two more hardwired interrupts (CRD, MEMERR)

– Full hardware implementation of software interrupts

– Externally generated four phase overlapping clocks

VLSI VAX Micro-architecture

Rigel Decode Flow

EXAMPLE: ADDL3 R4, l^disp(R5), (R6)+

decoder next --> specifier decode

MD[Sn] := GPR[Rn] ! Flow for specifier

! Sn = 0, Rn = 4

decoder next --> specifier decode (IDR loaded)

MD[Sn] := MEM(GPR[Rn]+IDR) ! Flow for specifier

! Sn = 2, Rn = 5

decoder next --> specifier decode

VA := GPR[Rn] ! Flow for specifier

GPR[Rn]:= GPR[Rn] + 4 ! Sn = 4, Rn = 6

decoder next --> execution dispatch

MEM(VA):= MD[0] + MD[2] ! Execution

VLSI VAX Micro-architecture

Summary

• The implementation of the VAX in VLSI has required some

adaptations and adjustments at the macro-architectural level.

• The four VLSI VAXen defined to date (MicroVAX, V-11, CVAX,

and Rigel) all follow the same (canonical) micro-architectural

model.

• The implementation process is complex, with much effort ex-

pended on architectural nits that have little or no performance

benefit.

• The constraints of the VAX architecture have limited attempts

at performance improvement to just three basic areas:

– Improved technology

– Microcycle pipelining

– Improved memory subsystem

• Despite the difficulties, the VLSI VAXen have proven both pop-

ular and competitive, and will form the basis of DEC’s low end

and mid range product offerings for years to come.

VLSI VAX Micro-architecture

