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Abstract

Goals of expressiveness and flexibility in typed object-oriented programming suggest a
“covariant” type policy, where routine redefinitions can change the types of both arguments and
results in the same direction as the inheritance hierarchy. Unfortunately, a careless covariant
policy, when combined with polymorphism, genericity and dynamic binding — other O-O
mechanisms that are just as fundamental — may lead to run-time type violations known as
catcalls. We present a new solution to this problem, resulting from recent advances in the Eiffel
language, which enables compilers to spot all potential catcalls and forces programmer to resolve
them. The resulting language rules statically guarantee type safety; they only require local
analysis and are easy to explain to programmers.

1 OVERVIEW

The well-known risk of runtime errors (catcalls) arising from covariant redefinition has led many
language designers to prohibit covariance and limit generic mechanisms — avoiding that risk but
limiting programmers’ power of expression. We present a new set of language mechanisms and
rules, introduced into Eiffel as part of standardization at ECMA, which we believe provide a
satisfactory solution to the problem, ensuring full type safety without limiting expressiveness.

http://www.ecma.ch
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The solution uses two complementary techniques:

• It takes advantage of the notion ofexpanded inheritance, recently introduced
into Eiffel, which permits inheritance with all the associated facilities —
renaming, redefinition, undefinition, multiple and repeated inheritance —
except polymorphism.

• For the remaining cases, it requires any covariant redefinition to specify a
“recast” routine that will process any arguments that, at run time, happen not to
match the expectation.

This solution also covers issues caused by generic conformance and by descendant
export narrowing. It is described in detail from section11 onward (to which the
reader familiar with the problem may wish to turn first); intervening sections
describe the issue, shows how programmers in less expressive languages such as
Java address it, examine the pragmatic criteria for acceptability of a solution, and
review previous approaches.

2 STATIC TYPING, INHERITANCE, GENERICITY

A language isstatically typedif its definition includes a set of rules, enforceable
through mere analysis of program texts, which guarantee that no program satisfying
these rules will ever, during an execution, trigger atype failureresulting from an
attempt to apply an operation to a value on which it is not defined.

Static typing is good for software quality, since it’s always advantageous to
catch an error before rather than during execution, even if that execution is for
debugging or testing.

To eliminate type failures, any static typing policy will add some constraints to
the programming language, and so will restrict the set of programs that
programmers are permitted to write. These restrictions could go too far, as illustrated
ad absurdumby a trivial way to make any language statically typed: reject all
programs. Less extreme policies — ensuring, for example, that even with the
constraints the language remains Turing-complete — could still limit the language’s
expressiveness in a way that is practically unacceptable, by forcing programmers
into lengthy and contorted ways of expressing useful computations. This indicates
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that even though the notion of static typing has a rigorous definition (refined in
section7 from the first version just given) a discussion of the issue cannot use
rigorous criteria alone: it must also rest on an analysis, more subjective by nature, of
whether the typing rules are acceptable to programmers. Section8, “Pragmatic
considerations”, will provide this analysis, showing that a good static typing
solution must reconcilesafety with flexibility.

Since safety — here, the ability to guarantee the absence of run-time type
failures — is the very definition of static typing, we may consider this criterion as
an absolute requirement and examine type policies in light of the second criterion:
how much flexibility they offer. In the first statically typed languages — such as
Pascal — the typing rules were simple:

• Each variable must have adeclarationthat specifies its type.

• Each type permits a clearly defined set of operations on its instances.

• Any operation that the program applies to a variable must be one of those
permitted by its type.

• In any assignmentx := e of a value to a variable (or argument passingp (e)
where the formal argument ofp is x) the type ofe must be exactly the same as
the type of the variablex.

There is only minimal tolerance beyond these rules — to permit the traditional
conversions between arithmetic types and, in the case of Pascal, to support record
types with variants.

Statically typed object-oriented languages bring a major advance in flexibility
by basing their type systems on inheritance. In an assignment (or argument passing,
which should have the same semantics), the type of the source may be not just
identical to the type of the target, but also a descendant type. If the types are
different, the assignment is said to bepolymorphic.

The type policy of such languages is based on inheritance. In a polymorphic
assignmentx := e or argument passingp (e), the type of the sourcee mustconform
to the type of the targetx. In simple cases this notion of conformance is just
inheritance:C conforms toA, both being classes, ifC is a descendant (direct or
indirect heir) ofA. The presence of genericity and other advanced type mechanisms
leads to a refinement of this notion; for example ifLINKED_LISTinherits fromLIST
and both are generic classes, thenLINKED_LIST[BOAT] conforms toLIST[BOAT]
and — subject to the results of the present discussion —LINKED_LIST[CAT] will
conform to LIST [BOAT] assuming thatCAT (for “catamaran”, not the animal)
conforms toBOAT.
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3 COVARIANCE

The use of inheritance as the basis for the type system leads to greater flexibility. Of
particular interest is the ability to redefine the type of a feature’s results and arguments
in descendant classes. Typical examples arise with parallel inheritance hierarchies:

A CAT is (left side of the picture) a particular kind ofBOAT, whosecaptainis (top
right) aSKIPPER; the procedure that assigns the captain to the boat is calledsail.
The classBOATmay be declared as

Note the precondition (require...) included here to specify that the skipper reference
passed as argument must not be void, but denote an actualSKIPPER object.

In classCATwe express that a catamaran must be sailed by someone with the
proper qualifications. To this effect we may use theredefinitionmechanism to give
captain a new type inCAT:

class BOATfeature
captain: SKIPPER

-- Skipper assigned to this boat

sail (c: SKIPPER) is
-- Appointc as captain of this boat.

require
captain_exists: c /= Void

do
captain:= c

ensure
set: captain= c

end
end

ARRAYED_

BOAT

STACK
CAT

Inherits

Client

captain

sail (...)

sail (...)
repair_second_hull

ARRAYED_

SKIPPER

STACK
CAT_

SKIPPER

captain
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For clarity the language requires us to announce, in aredefineclause, which features
we are going to redefine. This type redefinition ofcaptainis calledcovariant because
it goes in the same direction as inheritance: from general to specific.

If we only ever applied covariant redefinition to theresult typeof attributes and
functions, as withcaptain, no particular safety issue would arise from the increased
flexibility. But we can’t stop here. If catamarans require a more specific kind of
skipper, the argument to the procedure thatassignsa skipper to a boat must change
accordingly. So we should use covariant redefinition for routine arguments too:

For such a “setter” procedure the body of the redefinition would, as shown, simply
reproduce the original, unlike routine redefinitions that also change the
implementation. Such signature-only redefinitions are common and would cause
“redefinition avalanche” with large amounts of duplicated code. This is not
acceptable in practice and is avoided by Eiffel’sanchored typemechanism. It
suffices to declare the original version ofsail, in BOAT, as

This “anchors” the type of the argumentc to the type ofcaptain, so thatc has type
SKIPPERin classBOATand, in any descendant that covariantly redefines that type,
the new type ofcaptain, for exampleCAT_SKIPPER in classCAT.

class CATinherit
BOAT

redefine captain, sail end
feature

-- Catamaran skipper assigned to this catamaran
... See next ...

end

-- (Missing part ofCAT above.)

sail ( ) is
-- Appointc as captain of this boat.

... do clause as in classBOAT...

-- (Rewrite of declaration ofsail in classSKIPPER.)

sail ( ) is
-- Appointc as captain of this boat.

... Body same as in original ...

captain: CAT_SKIPPER

c: CAT_SKIPPER

c: like captain
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Anchored types only make sense with covariance; conversely, it’s hard —
because of the redefinition avalanche problem — to imagine a covariant type policy
that would not provide anchored types.

Not all cases of argument covariance will, however, use anchored types, because
anchoring requires that you canpredict covariant redefinition at the level of the
original declaration, here inBOAT. This issue of “ancestor foresight” is discussed
further below (page17).

Anchored types, so important in the practice of covariance, will require no special
treatment in this discussion because the language definition treats them as a mere
syntactical abbreviation for explicit covariant redefinition. All type rules apply to an
“unfolded” form of classes where anchored types have been expanded to their full
meaning; for examplelike captainwill be replaced, in the application of type rules
to classCAT, by the actual type it denotes in that class:CAT_SKIPPER.

4 COVARIANCE IN PRACTICE

The cats-and-boats example is not contrived. It is typical of a common scheme:
covariant redefinition of the type of a query (usually an attribute, but possibly a
function) such ascaptain. The very first case of inheritance that many people see in
elementary presentations tends to be (see e.g.[16]) something like a classMAMMAL
inheriting from ANIMAL; if there is a queryoffspring, then its type should be
redefined covariantly throughout, reflecting that the offspring of a mammal are
mammals, not just animals.

This is of course just a pedagogical example, but the scheme is just as frequent
in practical software development. If we want a general classNUMERIC
representing numbers with the usual arithmetic operations, then a query such as
minus, giving–afor a numbera, should yield a real number in the descendantREAL,
a complex number inCOMPLEXand so on. Or, if we have various implementations
of trees, the queryparentshould be redefined, in each of the corresponding classes,
to yield the same kind of tree node.

As soon as we permit such covariant redefinition of queryresults, the types of
argumentsmust follow in the associated “setter” procedures, such assail for boats,
engender for animals,set_parent for tree nodes.
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Argument covariance also arises in the absence of such queries. The most
obvious example is the function to compare two objects, declared in Eiffel as

and essential in any O-O model. (Currentis the current object, also known as “this” or
“self”; like Currentis anchored to the type defined by the enclosing class.) Even in the
absence of an anchored declaration mechanism, this would call for covariance: in a
classA, we’ll want to compare instances ofA with instances of the same type. These
observations also apply to a procedurecopy(other: like Current) which copies the
contents ofother onto the current object.

5 HOW JAVA PROGRAMMERS DO IT

Many typed object-oriented languages, notably Java and C#, avoid the issues
discussed in this article by prohibiting signature redefinition, as well as descendant
hiding and genericity. (Genericity mechanisms are planned but not released.) It is
interesting to try to understand how programmers in these languages get around the
issue. Typically, they use a large amount of casting (type conversions).

A good example is provided by the following extract from the Java AWT
library (abbreviated from the source atjava.sun.com/j2se/1.4.1/download.html). An
“interface” (completely deferred class) defines a routineaddLayoutComponent:

Here now is a class that would want to make the routine secret, but cannot because
officially there is no descendant hiding:

is_equal(other: like Current): BOOLEAN

public interface LayoutManager2 extends LayoutManager {...
void addLayoutComponent(Component comp, Object constraints);
...

}

public class BoxLayout implements LayoutManager2 ... {...
...
 /** *
...
*/
public void addLayoutComponent

(Component comp, Object constraints)
...

}

Not used by this class.

{ }

http://java.sun.com/j2se/1.4.1/download.html
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Note the techniques, highlighted above, to suggest descendant hiding: a comment
saying the routine is inapplicable here; and a body that does nothing. Nothing,
however, prevents a client from executing the routine, either directly or through a
polymorphic call; the result — doing nothing — will hardly be satisfactory, or reveal
the error.

The original types for the arguments areComponentandObject. As in many
practical cases, another descendant requires covariant redefinition. This is not
permitted by the language so let us see how the programmer has addressed the issue:

Since in this class the routine expects theconstraintsargument to be of type
GridBagConstraintsrather than the originalObject, it has to perform a type test
(instanceof), then a cast, to call the appropriate operationsetConstraintswith valid
arguments; if the type doesn’t match, all it can do is throw an exception. This kind
of processing, made necessary by the inflexible type rules of the language, is not
attractive, and may lead to undesirable exceptions at run time.

The same example incidentally shows the consequences of lacking a genericity
mechanism. The routinesetConstraints is itself written as

public class GridBagLayout implements LayoutManager2 ... {...
public void addLayoutComponent

(Component comp, Object constraints) {
        if (constraints instanceof GridBagConstraints) {

        setConstraints(comp, (GridBagConstraints)constraints);
    } else if (constraints != null) {
        throw new IllegalArgumentException(

"cannot add to layout: constraints must be
a GridBagConstraint");

    }
    }
...
}

public void setConstraints
(Component comp, GridBagConstraints constraints) {

comptable.put(comp, constraints.clone());
 }
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with

(A possible name for the programming language mechanism illustrated here is
“Genericity Through Comments”.) Defining a classHashtablewithout genericity
will, in the code using hash tables and other common container structure, lead again
to numerous casts, and in the end to brittle programs where unplanned run-time
cases may cause program failures.

These examples, from a fundamental Java library, seem to suggest that the
mechanisms discussed in this article — covariance, descendant hiding, genericity —
do address fundamental expressive needs of programming; excluding them leads to
a contorted style involving casts and exceptions, and to risks of run-time failure.

The mechanisms have their own potential problems, to be discussed now. It
seems appropriate to include the mechanisms and address their problems, rather
than stick to the more restrictive style just illustrated.

6 CATCALLS

The flexibility of covariant redefinition leads to the risk of run-time type failures
known ascatcalls. A catcall is an attempt to apply an operation to an object for
which the operation is not defined; the precise definition appears in section7.
Catcalls may happen out of three main causes: combination of argument covariance
and polymorphism; genericity; descendant hiding.

The first is the conflict between covariant argument redefinition,
polymorphism and reference aliasing. With these declarations (used throughout
later examples):

the followingpolymorphicassignment is valid:

 /**
     * This hashtable maintains the association between
     * a component and its gridbag constraints.
     * The Keys in <code>comptable</code> are the components and the
     * values are the instances of <code>GridBagConstraints</code>.
   ... */
  protected Hashtable comptable;

boat1: BOAT; cat1: CAT
skipper1: SKIPPER; cat_skipper1: CAT_SKIPPER

boat1:= cat1
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and the following call is always type-valid:

But if the two are executed in sequence — assuming that all the associated objects
have been previously created — then the routinesail of classCATputs at run time
a non-specialistSKIPPER, rather than aCAT_SKIPPER, in charge of aCAT,
precisely what the redefinition of the argument ofsail was intended to prohibit.

This case prompts two comments:

• Nothing truly bad happens at the time of the call tosail; rather, as illustrated
below, the run-time structure now contains a ticking bomb, a referencecaptain
to aSKIPPERobject in aCATobject, instead of the expectedCAT_SKIPPER
object. The problem will manifest itself when the execution attempts to access
a feature that is only defined forCAT_SKIPPERobject, for example
captain.repair_second_hull, where the procedurerepair_second_hulldid not
exist inSKIPPER(as shown in the figure on page4). Applied to an ordinary
non-catamaranSKIPPER, the attempt to callcaptain.repair_second_hullwill
fail at run time.

• The problem only arises because object models typically rely on references and
onaliasing, the ability for different references to be attached to the same object.
Here the polymorphic assignment causes the same object, of typeCAT, to be
available through two references,boat1 and cat1. The problem is that the
corresponding program variables are of different types and hence assume
different operations.

boat1.sail (skipper1)

captain

Instance ofSKIPPER
Instance ofCAT

(The “ticking bomb”:
assumed byCAT_SKIPPER
to be attached to aCAT)

(instead ofCAT_SKIPPER)

Instance ofCAT

boat1

cat1

sees it as aBOAT

sees it as aCAT

captain
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The second source of catcalls is the addition of genericity to the preceding
mechanisms. It seems desirable, for a generic class such asLIST [G] — as well as
ARRAY, SET, BINARY_TREEand others representing container structures — that
LIST[C] conform toLIST[A] if C conforms toA, since a list of catamaran skippers
(for example) is a list of boat skippers. But then with

and the assignment

we may add an element to the skipper list:

whereextendappends an element at the end of the list; for that element the call uses
a SKIPPERargument since we have a list of skippers. But that is still the same list
ascat_skipper_list; so we may also use

wherelast returns the last element of aLIST. This puts us in the same ticking-bomb
state as in the first case; withcat_skipper1we think we have aCAT_SKIPPERbut
it’s actually attached to a plainSKIPPER, so a seemingly legitimate call
cat_skipper1. repair_second_hull will fail at execution time.

The third cause of catcalls, “descendant hiding” is somewhat different. It arises
if we allow a descendant class to restrict the export status of a feature that it inherits.
The standard example is a procedureadd_vertex, exported in classPOLYGON, but
made secret (private) in its descendantRECTANGLE. Then with dynamic binding a
call of the form polygon1.add_vertexwill fail if polygon1 is polymorphically
attached to an object of typeRECTANGLE.

The most common response is that such descendant hiding is bad and should
be prohibited by the language. But one may argue a more subtle case[10]. Without
deciding on the methodological issue for the moment, we simply register the
problem as another potential source of catcalls.

In the term “catcall”[9], denoting a run-time type failure arising from one of
the causes listed here, “cat” is an abbreviation for a feature’sChanged Availability
(the last case)or Type(the other two). The rest of this article develops techniques to
defeat catcalls.

skipper_list: LIST[SKIPPER]; cat_skipper_list: LIST[CAT_SKIPPER]

skipper_list:= cat_skipper_list

skipper_list.extend(skipper1)

cat_skipper1:= cat_skipper_list.last
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7 DEFINITIONS

Defeating begins with defining. The following are more precise statements of the
basic concepts and issues used informally so far.

Although the discussion applies to object-oriented programs, we may start in a
more general context. We assume that the execution of a program consists of a
sequence of operations, and that each operation expects operands of specific types.
This is true even at the machine level: a floating-point addition requires its operands
to be floating-point numbers, and otherwise will fail.

Here is what we are trying to avoid:

Run-time type failures are damaging not only to software reliability but also
potentially to security, since a favorite intrusion technique is for an attacker to
misuse an operation on operands for which it was not intended.

To fendoff run-time type failures,aprogramming languagedefinitionmay include
special constraints,makingupwhat isalsocalled the “staticsemantics”of the language:

A typical validity constraint is the usual rule on assignmentstarget:= source, stating that
the type of thesourcemust be the same as the type of thetarget(or, in an O-O language
with inheritance, conform to it). In line with the definition of validity constraints:

• It only applies tosyntactically legaltexts; it is the job of the syntax rules (not
the validity constraints) to specify that the assignment symbol must be properly
written as:=, that the target must be a variable and the source an expression.

• It is aboolean conditionon program texts: a syntactically legal assignment may
or may not satisfy the constraint.

In this discussion we are interested in a particular kind of validity constraint, for
languages where it is possible to associate a type with various program elements
such as variables and expressions:

Run-time type failure
A run-time type failureis a program’s attempt, during execution, to apply
an operation to an operand whose type is not acceptable to the operation.

Validity constraint
A validity constraintfor a programming language is a boolean condition
applicable to any syntactically legal program text in the language.

Type rule
A type ruleis a validity constraint involving the types associated with
program elements.



§7  DEFINITIONS 13

Programs satisfying these rules will be called “valid”:

Note the gradation in soundness properties: a program may or not be syntactically
legal; if it is, it may or not bevalid (a concept that is not defined if the program is
not syntactically legal). If we also have a way to define the intended behavior of a
program, as with Eiffel’s contracts, a program may or not becorrect for that
specification (a concept that is not defined if the program is not valid, and is also not
explored further in this discussion).

These definitions lead to the programming language property that we are trying
to achieve:

The power of this notion comes from itsstatic nature: the type rules are boolean-
valued functions on program texts. If a language is statically typed we can guarantee
the absence of run-time type failures by examining program texts prior to any
execution. This is far superior to any technique that would involve running tests of
the programs.

This examination of program texts will be the responsibility of a software tool:

Making a language statically typed means adding a set of type rules to its definition,
and hence — for the sake of safety of program execution — restricting the set of valid
programs. The issue discussed in this article is the conflict between this safety concern
and the flexibility resulting from object-oriented mechanisms. We must devise a set
of typing rules that make the language statically typed according to this definition,
without depriving programmers of the power of expression afforded by the powerful
mechanisms of object-oriented development including classes, single and multiple
inheritance, polymorphism, dynamic binding and — if possible — covariance.

Valid program
A syntactically legal program written in a programming language
whose definition includes a set of type rules isvalid if it satisfies all
these type rules.

Statically typed language
A programming language isstatically typedif its definition includes a
set of type rules, guaranteeing that no execution of a valid program will
ever produce a run-time type failure.

Static checker
A static type checker (static checkerfor short) for a programming
language is a program that can process any syntactically legal program
text in that language and determine whether it satisfies the type rules.
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It’s also useful to define “catcall”. What’s special about catcalls is that they are

not straightforward type errors — such as an assignmentcat1:= boat1where the

type of the source would not conform to the type of the target — but plague

programs that pass basic static type checking. Let’s first define that basic level:

Here a typeconforms toanother if its base class is a descendant of the other’s base

class and, if there are generic parameters, they also conform (as withLIST [CAT]

conforming toLIST [BOAT]). The name “class-level validity”, indicates that this

property can be checked class by class, without access to the rest of the system. The

above definition sticks to the essentials; for details see chapter 22 of[7].

Catcalls arise when class-level validity does not suffice to ensure validity:

Calls may bequalified, as inx.f (...), or unqualified, as inf (...) wheref is a feature

of the enclosing class. In Eiffel the export rules only apply to qualified calls; hence:

Thanks to this property we don’t need any anti-catcall validity constraint forsecret

features. We’ll take advantage of this property when defining our final type rules.

Class-level validity
A system (object-oriented program) isclass-level-validif it satisfies the
following properties:
1 • In every assignment or argument passing, the type of the source

conforms to the type of the target.

2 • In every feature callf (...) (unqualified) orx.f (...) (qualified),f is
an exported feature of the class on which the type ofx is based.

Catcall
A catcall is a feature call that, in a class-level-valid system, can cause
a run-time type failure because of the presence in the system of any of:
1 • A covariant argument redefinition.

2 • A routine argument whose type is a generic parameter.

3 • Descendant hiding (export restriction for an inherited feature).

Export-catcall rule (for an Eiffel-style export policy)
Only qualified calls may cause catcalls.
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8 PRAGMATIC CONSIDERATIONS

The precise definitions of the previous section are not sufficient to decide whether a
proposed set of type rules is satisfactory. We must also consider a number of
practical criteria.

Efficiency

The first practical requirement could in fact be added to the basic definitions: since
we expect the type checking to be done by a software tool — thestatic checkerof
the last definition — the type rules must at the very least bedecidable. In practice
that’s not even sufficient: we will also want the checking process to be fast enough.

What concretely is a static checker? Since statically typed languages lend
themselves to compilation, the static checker is usually integrated with a compiler,
which just has type checking as one of its responsibilities along with syntax analysis
and checking, code generation, optimization etc.

Alternatively, the static checker may be a separate tool, in the style oflint for C
and otherstatic analyzersthat check various properties of programs. With this
scheme the compiler performs basic type checking only, leaving aside the more
delicate issues, so that catcalls may remain after compilation; the checker will be run
at specific milestones. The only argument for doing things this way — other than
making up for the type-checking deficiencies of a compiler over which you have no
control — is that the static checker may take too long to be integrated in a standard
compilation cycle, especially under incremental compilation. Although feasible in
principle, this approach carries the obvious risk of forgetting to run the checker
before releasing a system to production. In any case it doesn’t relieve static checking
from efficiency constraints; if checking time adds too much to compilation time,
developers are unlikely to use it systematically.

Expressiveness

As has been noted, any static typing policy (as defined by a set of type rules) restricts
the set of valid programs. Some computations that would be expressible without the
type rules will no longer be permitted.
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We may exclude over-restrictive policies by requiring for example (as
suggested earlier) that the resulting language still be Turing-complete. This has not
been included in the definitions of static typing because the real criterion is stronger:
the typing rules must still leave to the programmer a sufficient power of expression.
How much expressiveness is sufficient remains partly a subjective judgment; for
example, Java programmers appear to survive without genericity, covariance or
multiple inheritance, and some of them may not realize what they are missing if they
have not had access to these mechanisms in other languages. On the other hand,
examination of typical Java code shows (see Viegaet al. [14]) that they resort to
various unnatural tricks to emulate them.

In any case we must recognize that almost any static type policy will be
pessimistic: to disalloweveryprogram thatmight cause run-time type failures, it
may disallowsomeprograms thatmight notcreate type failures. An elementary
example is the prohibition, in statically typed languages, of the assignment of a
floating-point expression to an integer variable, on the grounds that it would usually
cause a loss of information, and that the programmer should specify an explicit
behavior such as rounding up, rounding down or truncation. But occasionally this
does not apply, for example inmy_integer:= my_realwheremy_realhas value0.0,
representable as an integer without any loss. The assumption behind static typing is
that excluding such cases does not place an undue restriction on programmers.

Proponents of dynamic typing, as represented among O-O languages by
Smalltalk, disagree: rejecting any kind of static limitation, they are willing to take
the risk of run-time type failures rather than limit type combinations in any way.
(More precisely, they generally assert that in real development programmers make
few type errors, and that any that do occur are easily caught during testing.) At the
other extreme we find what some people deride as “bondage-and-discipline

languages”, whose type rules are too strict for the needs of practical programming.
(No examples will be cited here.)

These observations indicate that we cannot pretend to full objectivity while
discussing the issue of a proper type system for an O-O language; rather, the result
must be an engineering decision of how much expressiveness programmers are
entitled to enjoy.
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Not requiring ancestor foresight

Another criterion, often neglected in theoretical discussions of covariance, is critical
in practice: how much foresight is required of the author of a class whose
descendants may redefine a routine covariantly.

In the scheme that we have seen so far, an ancestor can explicitly specify an
argument or result as covariant by declaring it anchored, aslike anchor for some
anchor that descendants may redefine, automatically causing the implicit
redefinition of all elements anchored to it. But such foresight is not required: a
descendant may want to redefine argument and result types even if the ancestor
made no mention of the possibility.

Assuming foresight — for example by limiting covariant redefinition to the
anchoring scheme — slightly simplifies the issue. The problem is that such an
approach conflicts with theopen-closed principleof object-oriented design, which
suggests[10] producing classes that are both directly usable (closed) and amenable
to variation (open) through inheritance; as a result, ancestor classes should not have
to know about their descendants, and should not limit the descendants’ power of
extension other than by specifying contracts — the class invariant, the routines’
preconditions and postconditions — that bind descendant redefinitions.

Covariance fits well with this principle, but not if it requires ancestor foresight.
We should look for an approach that permits covariant redefinition even if the
ancestor has not prepared it.

Several of the previous approaches described in section9 work well
theoretically but fail to meet this criterion, implying that any new case of covariant
redefinition in a descendant requires going back to the original ancestor to update it.
This is usually not acceptable in the practice of object-oriented development.

Scope of the solution

A typing policy is only targeted at avoiding a certain kind of failures as defined
earlier:type failures. Other kinds of run-time failures will subsist; the most common
is the application of a feature to a non-existing object by trying to follow a void (null)
reference. In the Eiffel framework whereVoid is of a special typeNONE that
conforms to all other class types and exports no features, void feature calls could in
theory be treated as catcalls, but this view does not appear very useful in practice and
other techniques have to be devised, specific to void calls (see for example[11]).

Other kinds of run-time failures, not specific to the object-oriented framework,
are still possible, for example floating-point exceptions.
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Handling catcalls

A category of solutions exists that follows the letter of the preceding definitions but
may not be satisfactory in practice. Since the official purpose of a typing policy is to
guarantee thatno run-time type failureswill occur, we might take advantage of the
last observation to catch any such failure at run time just before it occurs, trigger a
failure of some non-type kind — for example a void call — and declare victory.

An example of such a policy, which meets the definition of static typing, is to
define the language semantics as requiring that any call, at run time, must check
every argument for conformance to the statically declared type and, if it doesn’t
conform, trigger a non-type failure. The compiler — which in this scheme is also the
static checker — will for every call generate code to check argument types.

Although we may consider such a solution as cheating with the definitions, it
does present a practical advantage: if the concern issecurityrather than reliability,
turning type failures into other kinds of failures rules out illegal access to objects,
achieving a significant security benefit. (The goals of reliability and security are not
always concomitant: for the reliability engineer, a program that stops by crashing is
a disaster; for the security administrator, it’s a disaster avoided.)

Indeed we cannot dismiss the idea ofhandlingcatcalls dynamically rather than
preventing them statically. But pursuing it requires two key improvements:

• First, there is an efficiency issue. It’s absurd to start from a statically typed
language and still force the compiler-generated code to check type consistency
at run time for every call and every argument — all for a case (catcalls) that
arises only exceptionally. (In the authors’ collective Eiffel experience, ranging
over a period up to eighteen years and over programs of up to two million lines
of code, a catcall might occur, in a given project, once every few months —
although this doesn’t make it less painful.) If run-time type checking code is to
be used, it should only be generated for the covariant redefinition cases that
might cause catcalls.

• Second, if the generated code detects a catcall, it is not sufficient to terminate
the program abruptly. In production programming, we can’t deliver programs
that may in some cases just mysteriously crash, even if it’s not a security risk.

Rather than termination we could trigger an exception; but that’s not enough either,
because there is no simple and effective way to force the programmer to process the
exception according to a predefined scheme.

What we will do — in the solution finally retained below, which is a variation
on this policy — is to limit possible catcalls to the strict minimum through purely
static means, then require that programmers make any remaining cases explicit and
provide a systematic way of handling them through associated routines.
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Compatibility

A practical criterion to be taken into account is the effect of any catcall-preventing
solution on existing software compiled with a more tolerant policy. Clearly, any
catcall risk unearthed by the new policy signals a dormant flaw in the existing
software, and should be corrected. But it would be improper to make the code
suddenly uncompilable. If the new typing rules are enforced by the compiler, a
temporary compatibility option should be available to allow, with the appropriate
warnings, continued use of software that was written prior to the new rules — and
leave time for the correction of potential catcalls.

Clarity, fragility, incrementality

A final requirement, not necessarily prominent the first time one looks at a proposed
theoretical solution, is essential to its practical acceptance: whether violations of the
type rules can be reported clearly to the programmer, with a message identifying the
error locally and incrementally. Given the possible complexity of catcall schemes
this may be delicate. Consider the earlier call

which is catcall-prone ifboat1may polymorphically become attached to an object
of typeCAT. Earlier, the fateful assignment,boat1:= cat1, was in the same program
unit. But an identical catcall situation will occur as a result of instructions

appearing in a routine

where, locally, everything seems fine, since all variables are of typeBOAT. Assume
the above code is in a classA. A different classC may have a call tor, of the form

creating a catcall situation. In theory, this is the same scheme as before. But if we
have a mechanism to detect catcalls, phrasing the error message is more delicate:
how do we explain to the author of classC what’s wrong? This is even harder if class
A — seemingly innocuous by itself, but now causing a catcall — is a library class,
not controlled by the author of the clientC, and possibly with source code not even
available. The level of indirection is potentially unbounded: instead of the call
could be usingboat3, itself an argument of the enclosing routine inC, for which a
caller may at any time use an actual argument of typeCAT.

boat1.sail (skipper1)

boat1:=
boat1.sail (skipper1)

r ( )

x.r ( )

boat2

boat2: BOAT

cat1

cat1
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We may draw three lessons from this analysis:

• Clarity: since the cause of a catcall can be a combination of elements scattered
throughout the text of a system and the libraries it uses, any strategy for
detecting catcalls must be able to produce error messages that clearly identify
this combination, enabling the client programmer to understand what’s wrong.

• Fragility: adding a simple assignment or routine call to a system that has been
proved catcall-free can introduce a catcall.

• Incrementality: a detection policy should not only produce locally relevant
messages but also be applicable after a change to the system, without forcing a
new analysis of the entire text.

9 PREVIOUS SOLUTIONS

The issue of covariance has been widely discussed, and language solutions to the
catcall problems proposed by many authors. This section briefly examines some of
the existing approaches.

Novariance

In many O-O languages, there is no covariant redefinition, no descendant hiding,
and even no genericity. This is the case in Java and C#; C++ has templates for
genericity, and permits covariant redefinition of results but not of arguments.

In these languages the problem obviously doesn’t arise, but one may argue that
the loss of flexibility penalizes programmers and forces them into programming
idioms that may create the same kind of run-time crashes that might arise from
catcalls in a covariant language. The Java library examples seen in section5 support
this view.

Contravariance

One possibility explored by a number of theoretical papers is to allow covariant
redefinition for results (new type conforms to old type, as discussed in this
presentation) andcontravariantredefinition (old type conforms to new type) for
arguments. To our knowledge the only O-O programming language that has
supported contravariance is Sather[13].
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In this approach no catcalls are possible, and the mathematical models are
somewhat simpler. The problem is that contravariance doesn’t seem useful in
practice. The earlier discussions, and everyday examples, suggest that “the world is
covariant”. In particular allowing covariant results but disallowing covariant
arguments mean that we can’t associate setter procedures (such assail or engender)
with queries, or write object comparison functions such asis_equalwith proper type
signatures. Regrettably in light of its mathematical elegance, this scheme seems to
have little practical applicability.

Runtime exceptions

Another approach, mentioned above as “handling catcalls”, has been implemented
by some compilers: in situations that can cause catcalls, such as a covariant
argument redefinition, generate code that checks types and produces an exception if
they don’t match.

The disadvantage of this scheme is that it doesn’t explicitly make client
programmers aware of a risk of exception, so that they have no incentive to provide
an exception handler.

Another drawback is the efficiency penalty, hard to justify in a language that is
statically typed, or at least “almost” typed with the exception of covariance.

More fundamentally, it’s not right to let the programmers who cause potential
catcalls, for example through a covariant argument redefinition, to wash their hands
off the problem by just triggering an exception in case of a type mismatch.

The approach described below does use a form of runtime detection, but only
for catcall-prone cases, and with explicit programmer-specified handling.

Genericity-based solution

Franz Weber observed[15] that covariance is a form of type parameterization, which
could be handled by the parameterization mechanism present in Eiffel and some
other object-oriented languages: genericity.

Indeed we can make a class such asBOATgeneric,BOAT[S] where the formal
generic parameterSrepresents the kind of skipper sailing the boat. Thencaptainand
the argument ofsail are simply declared of typeS within the class. Variables
representing ordinary boats will be declared of typeBOAT [SKIPPER]; CAT will
inherit fromBOAT[CAT_SKIPPER].

This approach works nicely for examples with only one covariant redefinition,
but adds a generic parameter for every argument type that may undergo covariant
redefinition; the extra parameters, which become part of the class specification, are
hard to justify to a casual user of the class. For class designers, they assume perfect
foresight of all covariant redefinitions and hence defeat one of our criteria. In
addition the approach requires a set of new type rules that appear difficult to learn
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F-bounded polymorphism

An abundant literature on type theory, starting from the work of Cardelli[1] [2], has
proposed mathematical models for the type systems of object-oriented languages,
building in particular on the notion of F-bounded polymorphism proposed in[4] and
developed in many subsequent articles. A more immediately understandable name
for F-bounded polymorphism is “types defined by recursive constraints”. A concise
type definition forBOAT is

whereA → B is the type whose elements are functions fromA to B; in line with the
work on F-bounded polymorphism, which has mostly been using functional
languages as examples,set_captainappears here as a function returning a new boat
(rather than a procedure modifying the current boat). This style of definition
characterizes a class type as a kind of record type{ a1: T1; ... an: Tn} with named
components, some of which may represent attributes, likecaptain, and others
functions, like set_captain. The definition ofBOAT above is recursive and so
meaningless without further conventions. In the F-bounded interpretation, we may
consider that, takingBOATto denote the typeBOATand all its descendants such as
CAT, the definition means

where≤ denotes type conformance (based on the inheritance relation) andF_BOAT,
a two-argument function from types to types, is defined as

With this typing, the definition ofCAT (including its own descendants) is now

implying that CAT also satisfies[D1] and hence that we can considerCAT as a
descendant ofBOAT. From [D3] the signature ofset_captain in CAT is
CAT_SKIPPER→ CAT, as desired.

BOAT= {captain: SKIPPER; set_captain: SKIPPER→ BOAT}

[D1] BOAT≤ F_BOAT[BOAT, SKIPPER]

[D2] F_BOAT[B, S] = { captain: S; set_captain: S→ B}

[D3] CAT≤ F_BOAT[CAT, CAT_SKIPPER]
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For the practicing programmer, this approach means essentially the same as
Weber’s genericity-based solution. We may implement it in Eiffel using the
constrained genericitymechanism which combines genericity and inheritance; class
BOATwill become

where the arrow inS–> SKIPPERindicates that the valid types to be used as actual
generic parameters forSmust be descendants of the “generic constraint”SKIPPER.
SoCAT may be defined as inheriting fromBOAT[CAT_SKIPPER].

This solution removes the catcall issue for covariance, but suffers from the
same practical problems as the previous one: need for total foresight, addition of
spurious generic parameters to the class interface, and sophisticated type rules.

Covariant redefinition as overloading

An ingenious approach devised by Giuseppe Castagna[3] considers that a covariant
redefinition — as forsail in CAT— does not override the original (here fromBOAT)
but coexists with it. This leads to a dynamic form ofroutine overloadingwhere any
particular call will at run time use one version or the other depending on the type of
the object passed as actual argument.

In our example, the callboat1.sail (skipper1), with boat1dynamically attached
to aCAT object, can no longer cause a run-time type failure:

• If skipper1is attached to aCAT_SKIPPERobject, the call executes the version
of sail redefined inCAT (as should all solutions since this is not a catcall).

• If skipper1is attached to aBOATobject, the call will simply use theBOAT
version of the procedure.

This approach has the advantage of removing all risks of catcalls, and also of
providing a form of “multi-methods” (routine selection based on arguments, not just
the target of a call).

The overloading technique doesn’t go well, however, with the object-oriented
style of programming. If we redefine a routine in a new class, it’s because we want
to apply the new version to instances of that class. This is particularly important if
the redefinition is not just for type adaptation (as in the examples so far) but also
changes the implementation and possibly the contracts. Then the overloading
convention can be very confusing: a client programmer who writes code using class

class BOAT[ ] feature
captain:

sail (c: ) is .. As before ....
end

S–> SKIPPER

S

S
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BOATwill want to know, from the description of the class interface, what its features
are and what each expects and provides. For example the new version of a redefined
routine may have a new contract (weakened precondition, strengthened
postcondition). With redefinition treated as overloading, the client can no longer
trust what a call with known target and argument types will do; the result may be to
trigger any number of overloaded variant of a routine, each with its own contracts.

Castagna’s view is that covariance and dynamic binding are exclusive
techniques; indeed, as we have seen, combining them without precaution leads to
catcalls. But we should still look for a solution that accepts covariance without
renouncing the basic rules of object-oriented programming.

The solution described later in this article does retain an element of Castagna’s
approach, as it requires examining, for a CAT routine, the actual argument type at
the time of any given call. But it stays away from overloading, always calling the
redefined version; the idea will be to “recast” any argument of a wrong type, using
a programmer-specified “recast function” that turns it into an object of the expected
type, subject to the contracts of the redefined version. This approach accepts
covariance while continuing to apply dynamic binding.

Match types

Colnet and Liquori proposed[5] a notion of “match type”, syntactically similar to
anchored (like) declarations, but with stricter conformance rules removing
covariance-related catcalls. The rules seem, however, too constraining in
comparison of the flexibility provided by anchored types and other current
covariance mechanisms.

System validity

One solution, described in the earlier Eiffel reference[7], is to rely on global system
analysis. For every variableeof an entire program (a system), the static checker will
compute a set of types, thedynamic type setof e, that includes the types of all objects
to whichemay become attached during any execution. Then to typecheck every call
x.r (a, ...) it will consider thatx and the arguments may take on not only their
declared types but also every type of their dynamic type sets.

The dynamic type set ofe doesn’t have to be theexactset of run-time object
types fore, which would be impossible or very hard to compute; it has toincludeall
these types. System validity, then, takes a possibly pessimistic approach, in line with
the earlier observation that static typing is by nature pessimistic. To avoid
performing complicated control flow analysis, it considers that any assignmente := f
in the system text causes the dynamic type set ofe to contain all the types in the
dynamic type set off.
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For example the presence of an assignmentboat1 := cat1 implies that the
dynamic type set ofboat1 contains the typeCAT.

This rule is pessimistic since a finer analysis might reveal that whenf is of some
specific typeT the assignmente := f will never be executed. System validity, in its
simplest form, does not consider such properties, assuming instead that every
assignment or argument passing may be executed.

The basic scheme for computing dynamic type sets is simple:

• Starting from dynamic type sets that are all empty, consider that every
creation instruction —create e or create{ EXPLICIT_TYPE} e in Eiffel,
e := new EXPLICIT_TYPE(...) in some other languages, adds the given type
to the dynamic type set ofe.

• Then, for every assignmente := f, or argument passing, add to the dynamic type
set ofe all the elements of the dynamic type set off.

• Repeat the previous step until no dynamic type set changes any more (this is
guaranteed to terminate after a finite number of iterations).

In spite of its pessimistic bias this approach has some advantages, in particular that
as a side product it yields information that the compiler can use for optimization. It
is also not too bad with respect to theclarity criterion, since the analysis can report
the exact combination of constructs that produces a potential catcall situation.

The main drawback of the system validity solution is its need to analyze the
entire source of a system. This obviously defeats the efficiency criterion, as well as
incrementality. In addition the solution requires significant extensions to handle
systems relying on libraries whose source code is not available. Experience with the
SmartEiffel compiler, which offers an option to check system validity, suggests that
the checks flag too many programs as invalid, and has trouble generating clear error
messages.

Catcall detection

An incremental version of system validity is possible if we accept an even more
pessimistic policy. In this version[9][10], the static typing policy disallows any call
x.r (a, ...) if x is polymorphic andr is a “CAT” routine. with the following
definitions:

• x is polymorphic if it is a formal argument of the enclosing routine, or appears
as target of an assignmentx := y, wherey is of a different type fromx or is itself
(recursively) polymorphic according to these same criteria.

• A routine r of a classC is a CAT routine (Changing Availability or Type) if a
descendant ofC ever redefines it with a covariant argument, or restricts its
export status.
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An advantage of this policy is that the determination of polymorphism is local to a
class; no global information is required. To spot CAT routines it suffices to make sure
that the compilation of every routine in a class records whether the routine has been
redefined or export-restricted; this is possible even without retaining the source code.

There are, however, two drawbacks. One is the added pessimism; in particular,
treating any formal argument as polymorphic, although required to permit
incrementality, may trigger many false alarms. But the more serious obstacle is
fragility. Adding a single assignment to a system that previously passed the type
checks may cause a catcall situation for reasons that are buried in the existing code.

10 SUPPORTING LANGUAGE ADVANCES

Language constructs recently introduced into Eiffel — generally for different
purposes — considerably help the search for a solution. They include tuples and
expanded inheritance.

Tuples

A tuple is a sequence of values of specified types. For example the Eiffel type
TUPLE [X, Y, Z] describes sequences (“tuples”) of three or more values, of which
the first is of typeX or conforming, the second of typeYor conforming, the third of
typeZ or conforming. An example of such a tuple value is[x1, y1, z1], with x1 of
typeX and so on.

The number of parameters, three in this example, is arbitrary: tuple types
includeTUPLE(without parameters),TUPLE [X] for anyX, TUPLE [X, Y] for any
X and Y etc. Because the definition ofTUPLE [X1, X2, ..., Xn] is that it covers
sequences ofat leastn elements of which the first has a type conforming toX1etc.,
the conformance rules letTUPLE [X] conform toTUPLE, TUPLE [X, Y] conform
to TUPLE[X] and so on.

Tuples will help our solution by letting us describe the type of a set of
arguments to a routine, rather than of just one argument.
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Expanded inheritance

Even more directly relevant is the notion of “expanded inheritance”, also called non-
conforming inheritance and implementation inheritance.

Expanded inheritance follows from the observation that inheritance combines
two purposes: subtyping (which justifies polymorphism) and reuse, and that
sometimes only the second is relevant. In this second role, inheritance simply acts
as a generalized module inclusion facility, enabling a class to take advantage of
features defined in others. Usually this mixes well with the subtyping role, but
sometimes we want reuse and no subtyping.

The reader has probably been warned against “implementation inheritance”,
perhaps as part of reading indictments of multiple inheritance. Although such
criticisms are valid when they target abuses of inheritance, they often assume
incomplete or flawed inheritance mechanisms. “Implementation inheritance”, better
called reuse inheritance, has its place as a legitimate reuse mechanism. See[10] for
a more extensive discussion.

Accepting the need for such a facility, one might think of achieving it through
language constructs completely distinct from inheritance. But it requires the same
mechanisms as subtyping inheritance: feature redefinition, renaming, undefinition
and others. As a result, reuse inheritance has been introduced into Eiffel as a mere
syntactical variant of usual inheritance, through the addition of the keyword
expanded. (This keyword, which explains the name “expanded inheritance”, also
serves to specify that a type is used through its actual values, not through references.)

The syntax difference is very simple. Using standard subtyping inheritance (not
expanded) we express that a classB inherits from a classA by declaring it as

class B inherit

feature
...

end

A
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or, to take advantage of mechanisms such as redefinition, undefinition, renaming:

This default form permits polymorphism, as in an assignmenta1 := b1 with a1 of
typeA andb1 of typeB, and hence serves for subtyping.

If you do not need polymorphism and subtyping, you may use expanded
inheritance instead, by just adding the keywordexpandedto the class being inherited:

The only difference with this form is that it doesn’t permit polymorphic attachments
(assignments or argument passing) fromB to A.

The relevance of this new technique to the catcall issue is that — as shown by
the discussion of the issues in section6 — covariant argument redeclarations, as
well as export restrictions, are harmless in the absence of polymorphism. So the first
step in a cleanup of existing code is to perform a systematic examination of
inheritance links, and add an “expanded” qualification whenever a link doesn’t
require subtyping. This will considerably decrease the number of catcall risks.

Secret features

Along with these new language developments, our anti-catcall policy will use a long-
present property that most earlier approaches didn’t mention explicitly: the Export-
catcall rule (page14), enabling us to limit our attention to non-secret features.

class B inherit

feature
...

end

class B inherit

feature
...

end

A
rename

f1 as g1, f2 as g2
redefine

f1
end

A -- Everything else unchanged:
rename

f1 as g1,  f2 as g2
redefine

f1
end

expanded
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11 THE NEW COVARIANCE SOLUTION

We now examine the rules that will remove catcalls in remaining cases, starting with

the covariant redefinition case (the following two sections will examine genericity

and export restriction).

Handling a covariant argument

Since the use of expanded inheritance avoids catcalls, we could altogether prohibit

covariant argument redefinition in non-expanded (polymorphic) inheritance. We

have rejected this solution as too restrictive; Eiffel programmers are attached to the

flexibility of covariant redefinition, even with polymorphism.

We must, however, force the programmer who uses a covariant redefinition to realize

that for a non-secret routine this causes a risk of catcall, and to handle the risk

situation. The requirement will be, in such a case, to provide arecast function. It

can be illustrated through the earlier covariant redefinition ofsail. We had

and

class BOATfeature
captain: SKIPPER

sail (s: SKIPPER) is ... do ... end
...

end

class CATinherit
BOAT redefine captain, sail end

feature

sail ( ) is -- Not valid as given, see next
... do ... end

end

ARRAYED_

BOAT

STACK
CAT

captain

sail (...)

sail (...)
repair_second_hull

ARRAYED_

SKIPPER

STACK
CAT_

SKIPPER

captain

captain: CAT_SKIPPER

s: CAT_SKIPPER
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Because this is not expanded inheritance, the new solution makes the redefinition of
sail invalid as given. Making it valid requires including arecast clause as follows:

whererecast is a new keyword of the language. Therecastclause cites a feature,
heretrained_as_cat_skipper, which must be a function of the enclosing class, taking
an argument of the previous argument type,SKIPPER, and returning a result of the
new argument type,CAT_SKIPPER:

The semantic rules specify that the execution of a call to such a covariantly
redefined routine starts by checking the argument type and, if it is not of the newly
expected typeCAT_SKIPPER— in other words, there’s a potential catcall —
applying the recast function, heretrained_as_cat_skipper, to produce a value of
that type. Then it executes the routine as usual, but with that “recast” value instead
of the value as passed by the caller.

This approach forces the author of any covariant redefinition, which with
polymorphic inheritance opens the risk of catcalls, to provide a guard against
catcalls through a conversion function declared in therecastclause. In the absence
of a recast clause, the redefinition will be rejected as invalid (unless of course it
appears in an expanded inheritance branch).

A recast function

What might such a recast function look like? You might let it just trigger an
exception, but that’s not very helpful. A better approach is to try to produce an object
of the new type that approximates the old object. Taking our example seriously we
might declare

sail (c: CAT_SKIPPER) is
-- Appointc as captain of this boat.

do
captain:= c

end

trained_as_cat_skipper(s: SKIPPER): CAT_SKIPPERis
... See an example implementation below ...

recast
trained_as_cat_skipper



§11  THE NEW COVARIANCE SOLUTION 31

where we assume that it’s possible to train an ordinarySKIPPERinto catamaran
sailing through the proceduretrain_for_cats. This procedure doesn’t give us a
CAT_SKIPPER— the skills may be right but the type is wrong — so we also need
a conversion function calledcat_skipper_equivalent above, which will look like

This example illustrates the general scheme: define a recast function that will return,
in potential catcall cases, a result of the newly expected type. This of course implies
extra work for the programmer, but is justified by the risk of catcalls. For “don’t care”
cases, it’s always possible to define a recast function that returns aVoid result — so
that it will cause a later void call or other fatal event — or directly raises an exception.

Multiple-argument routines

The case described so far involved a routine with just one argument. We may have
covariant redefinition for a routine with more than one argument

redefined covariantly in a descendant as

trained_as_cat_skipper(s: SKIPPER): CAT_SKIPPERis
-- A version ofs born again as a catamaran skipper

require
exists: s /= Void

do
s.train_for_cats
Result:= s.cat_skipper_equivalent

end

cat_skipper_equivalent: CAT_SKIPPERis
-- Catamaran skipper version of this skipper, if properly trained

require
trained: trained_for_cats

-- Proceduretrain_for_catsensures the postcondition
-- trained_for_cats.

do
create Result
... InitializeResult from fields of current object ...

ensure
result_exists: Result/= Void

end

r (t1: T; u1: U; v1: V) ... is ... do ... end
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where the typesT’, U’ , V’ respectively conform toT, U andV. It’s rare in practice to
redefine more than one of the arguments, but the possibility is there.

In this case too you will have to write a singlerecastclause specifying just one
routine, calledr_transform in this example; the routine must take arguments
corresponding to the original signature — here three arguments of respective types
T, U, V — and return a tuple, here of typeTUPLE[T’, U’ , V’], corresponding to the
new signature. It will be declared:

Note the role of tuple types in enabling the declaration of the function’s result. As in
the one-argument case, any call will start by checking the argument types for a
possible mismatch and, if it detects one, calling the recast functionr_transformto
obtain a tuple of argument values recast to the correct type. Then it will call the
redefined version ofr with these values as replacement arguments.

Handling all arguments through a single recast function has two advantages.
First, it obviously limits the amount of “recasting” code to write. But it also makes
it possible, in advanced cases, to use information from all the arguments to produce
the new values needed for any one of them that is being redefined covariantly.

The rule

The new validity rule for covariant argument redefinition may be stated as follows:

r (t1: T’; u1: U’; v1: V’) ... is ...

...
do

...
end

r_transform(t1: T; u1: U; v1: V): TUPLE[T’, U’, V’] ... is ... do ... end

Covariance rule
Any redeclaration of a non-secret routiner that changes the argument
signature toS’, from a previous oneS, must include arecast clause
listing a functionf of the enclosing class with the following signature:

• If Sis a single argument type,f has a single argument of typeSand
a result of typeS’.

• If Sincludes multiple argument types,f has the same arguments as
the previousr and a result of the tuple type corresponding toS’.

recast
r_transform
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The rule applies only tonon-secretroutines since secret ones cannot cause catcall
trouble (Export-catcall rule, page14). It applies not only to redefinition but to
redeclaration, which covers both redefinition (overriding a previously implemented
feature) and effecting (implementing a routine that was previously deferred).

Since anchored types (like anchor) as treated as an abbreviation for explicit
covariant redefinition, there is a companion rule for this case:

(The “base type” ofanchoris normally just the type ofanchorbut, if anchoris itself
of type like other_anchor, it is recursively the base type ofother_anchor. The
language rules permit this but ensure that there are no anchor cycles, so the base type
is always defined.)

12 THE NEW GENERICITY SOLUTION

If we want to permit generic conformance —C [U] conforms toC [T] wheneverU
conforms toT — then a generic classC [G] raises a risk of catcalls as soon as a
routine has an argument of typeG. This was illustrated earlier by an example:

The procedureextend, in classLIST[G] and its descendants, adds an element at the
end of a list, and hence takes an argument of typeG, here representingSKIPPER. It
causes exactly the same problems as a covariant redefinition. As a result, the rule is
the same, even in the absence of any redefinition:

Anchoring rule
Any non-secret routiner that has at least one argument of an anchored
type must include arecastclause listing a functionf of the enclosing
class, with the same properties as in the Covariance rule, takingS’ to
be the argument signature ofr, andSthe signature obtained fromS’ by
replacing anylike anchorargument type by the base type ofanchor.

skipper_list: LIST[SKIPPER]; cat_skipper_list: LIST[CAT_SKIPPER]
...
skipper_list:= cat_skipper_list

...
cat_skipper1:= cat_skipper_list.last

skipper_list.extend(skipper1)
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This requirement appears rather drastic at first, but is needed to make genericity safe
and preserve the possibility of generic conformance. Studies are in progress at ETH
and LORIA to determine what the impact will be on existing libraries such as
EiffelBase, which uses genericity extensively.

13 THE NEW DESCENDANT HIDING SOLUTION

The final cause of catcalls was export restrictions in descendants, as in

which makesadd_vertex secret (exported toNONE) in the new class.

Using expanded inheritance

Without any new language rule, classRECTANGLEis valid in the form given: the
expanded keyword specifies expanded (non-conforming) inheritance, so no
polymorphism is possible and hence no catcalls.

This scheme actually takes care of most common uses of descendant hiding.
The “marriage of convenience” form of inheritance[10], used widely in the
EiffelBase libraries[8], lets a class inherit its interface from one parent and its
implementation from another, as withARRAYED_STACKinheriting fromSTACK
andARRAY.

We must mention here that many people view the second inheritance link as
improper; but closer analysis suggests it is better than the replacements they
typically suggest, such as makingARRAYED_STACKa client rather than heir or
STACK. See the references just cited.

Genericity rule
In a generic class, any non-secret routine that takes at least one argument
whose type is one of the generic parameters of the class must include a
recast clause satisfying the same properties as in the Covariance rule.

class RECTANGLEinherit
POLYGON -- See below why now “expanded”

feature
...

end

expanded

export { NONE}  add_vertexend
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In such an example many of the features of the implementation parent,ARRAY,
should be secret in the descendant, since clients ofARRAYED_STACKshould not be
permitted directly to access and update arbitrary array elements. Expanded
inheritance is directly applicable:

Theall keyword applies theexport { NONE} status to all features inherited from
ARRAY. This may be overridden for specific features.

This form disallows polymorphic assignments from arrayed stacks to stacks, which
seems appropriate since there is no evidence that such assignments would be useful,
and clear evidence that they are catcall-prone. Based on our experience with Eiffel
libraries it appears that most existing cases of descendant hiding can and should be
rewritten to use expanded inheritance, removing the catcall risk.

Playing with the precondition

The question remains of whether we can have a catcall-free form of descendant hiding
with polymorphism, as would be the case withRECTANGLEin the absence of the
expandedkeyword. Is there a way to specify both that one may assign aRECTANGLE
value to aPOLYGONvariable and that classRECTANGLEdoesn’t exportadd_vertex?

We must note here that many methodology discussions would dismiss this
scheme as conceptually wrong. (As noted, even expanded inheritance, which
precludes polymorphism, doesn’t always pass muster.) A common reaction is that
the inheritance hierarchy should be changed to distinguish between “extendible”
polygons, which haveadd_vertex, and those which don’t. But this may conflict with
other classification criteria and lead to unnecessarily complex inheritance structures.
There are, in addition, arguments for permitting the extra flexibility of export
restrictions in polymorphic inheritance, covering cases of “taxonomy exceptions”
such as the example — famous in artificial intelligence — of treating ostriches as
birds even if birds have a “fly” operation. See[10] for a more extensive discussion.

Still without any language changes, there exists a conceptually correct
technique for achieving polymorphic descendant hiding of a routine, at least if we
disregard the “No ancestor foresight” criterion. The idea is to give the routine a
precondition which evaluates to true (or a specific condition) and is redefined in the
descendant to yield alwaysFalse, making the feature inapplicable.

class ARRAYED_STACK[G] inherit
STACK[G]
expandedARRAY[G]

export { NONE} all end
feature

...
end



TYPE-SAFE COVARIANCE: COMPETENT COMPILERS CAN CATCH ALL CATCALLS §1336

This scheme requires strengthening the precondition in the descendant. The
rules of Design by Contract do not permit this (they allow precondition weakening
and postcondition strengthening[10]), but what matters is the contract as seen by
clients, so we can achieve the intended result through theabstract precondition
technique, again developed in[10]: by making the precondition rely on a function,
we leave the precondition as such unchanged, but redefine the function. In the
example the original version ofadd_vertex will now have a precondition:

In RECTANGLE, we leaveadd_vertexuntouched and redefine its precondition to
yield False in all cases:

From a theoretical perspective this approach achieves the desired goal. Note in
particular that, whatever the inheritedadd_vertexprocedure does, it is correct in
classRECTANGLE, since the correctness of a routiner means

class POLYGONfeature
add_vertex(...) is

do ... end

extendible: BOOLEANis
-- Is it permitted to add vertices? (By default: yes)

do
Result:= True

end
end

class RECTANGLEinherit
POLYGON

redefine extendibleend
feature

extendible: BOOLEANis
-- Is it permitted to add vertices? (Here: no!)

do

end
...

end

{ INV and PREr}  BODYr { INV and POSTr}

require
extendible

Result:= False
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where INV is the class invariant; sincePREadd_vertexnow evaluates toFalse, this
property is always trivially true.

This scheme suffers, however, from three limitations:

• It requires ancestor foresight. Ifadd_vertexcomes from an existing class
POLYGONwhere it didn’t have a precondition, we have to go back to the class
and update it.

• In the absence of correctness proofs, we can’t trust clients to ensure the
postcondition in all cases, even though it is part of the specification so that any
call that doesn’t test forextendibleis incorrect.

• If we disallow descendant hiding, the interface of the descendant class
(“contract form” in Eiffel) will show the undesirable feature, hereadd_vertex.
That is unpleasant since it will advertise the feature to authors of clients of
RECTANGLE, who cannot and should not do anything with it.

Permitting explicit descendant hiding?

In the current state of discussions, the Eiffel standardization group is leaving the
descendant hiding matter exactly as discussed so far: descendant hiding is permitted
for expanded inheritance and in that case only.

An argument can be made for a more flexible policy working as follows: a class
would be permitted to restrict the export status of an inherited feature, even with
polymorphic inheritance, as long as itredeclaresthe feature (overrides the previous
implementation if there was one, or introduces a first implementation if the feature
was deferred). This is more in line with the “recast” solution adopted in other cases,
which confronts the possibility of catcalls head-on by providing an explicit
processing mechanism in catcall cases. Here too the class author would be required
to address the problem, by providing an explicit redeclaration.

In most practical cases such a redeclared version could only trigger an
exception or, if it is OK to ignore the call, do nothing (but adapt the precondition or
postcondition, in line with the earlier discussion, to preserve correctness).

Although this approach has the support of a few of the authors, a majority
considers it too risky and not needed in common cases, preferring to prohibit
polymorphic descendant hiding, while of course permitting descendant hiding for
expanded inheritance. This is the policy currently retained; there is no new language
mechanism, only a new validity rule:

Descendant hiding rule
In an inheritance link, the export status of an inherited feature may only
be more restrictive in the heir than in the parent if the link specifies
expanded inheritance.
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14 CONCLUSION

In the absence of a full mathematical model for the language, there is no proof that
the policy just described will guarantee type safety. Examination of known catcall
schemes seems to suggest, however, that it rules them all out.

A key property of this policy is that it puts the burden of a solution on the class
author who, by taking advantage of the flexibility of covariance and genericity, may
introduce a risk of catcall. The rules force the programmer to recognize this risk and
handle it at the very point of its introducion. Previous solutions tended to give him
a free hand, then to penalize future users of the class. This fairer assignment of
responsibilities — “If you can break it, you must fix it” — is one of the arguments
suggesting that the solution is in the right direction.

Work is in progress to apply this solution to existing libraries and application
systems, including very large ones in production. No final standardization decision
will be made until the results of these studies are in. On the basis of the concepts and
arguments examined so far, we feel that the techniques we have described will
provide the basis for a satisfactory and durable solution to the fundamental typing
issue: how to provide an ironclad guarantee of run-time safety while letting
programmers express their unbounded creative power.
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