Logic & Boolean Algebra

The Wolfram Language represents Boolean expressions in symbolic form, so they can not only be evaluated, but also be symbolically manipulated and transformed. Incorporating state-of-the-art quantifier elimination, satisfiability, and equational logic theorem proving, the Wolfram Language provides a powerful framework for investigations based on Boolean algebra.

Logical Operators »

And(&&, )  ▪ Or(||, )  ▪ Not(!,¬)  ▪ Nand()  ▪ Nor()  ▪ Xor()  ▪ Implies()  ▪ Equivalent()  ▪ Equal(==)  ▪ Unequal(!=)  ▪ ...

True, False symbolic truth values

Boole convert symbolic truth values to 0 and 1

AllTrue  ▪ AnyTrue  ▪ NoneTrue

Boolean Computation »

BooleanFunction general Boolean function

BooleanConvert  ▪ BooleanMinimize  ▪ SatisfiableQ  ▪ ...

Mathematical Logic

FullSimplify simplify logic expressions and prove theorems

ForAll (), Exists () quantifiers

Resolve  ▪ Reduce  ▪ FindInstance

Automated Theorem Proving »

FindEquationalProof generate representations of proofs in equational logic

ProofObject  ▪ AxiomaticTheory  ▪ ...

Boolean Vector Operations

Nearest, FindClusters operate on Boolean vectors

HammingDistance  ▪ MatchingDissimilarity  ▪ ...