
ReCon: Revealing and Controlling PII Leaks in Mobile Network Traffic

Jingjing Ren1, Ashwin Rao3, Martina Lindorfer4, Arnaud Legout2, David Choffnes1

1Northeastern Univ.,2Inria, 3Univ. of Helsinki, 4Vienna Univ. of Technology

Abstract
It is well known that apps running on mobile devices ex-
tensively track and leak users’ personally identifiable in-
formation (PII); however, these users have little visibil-
ity into PII leaked through the network traffic generated
by their devices, and have poor control over how, when
and where that traffic is sent and handled by third par-
ties. In this paper, we present the design, implementa-
tion, and evaluation of ReCon: a cross-platform system
that reveals PII leaks and gives users control over them
without requiring any special privileges or custom OSes.
ReCon leverages machine learning to reveal potential PII
leaks by inspecting network traffic, and provides a visu-
alization tool to empower users with the ability to control
these leaks via blocking or substitution of PII. We evalu-
ate ReCon’s effectiveness with measurements from con-
trolled experiments using leaks from the 100 most popu-
lar iOS, Android, and Windows Phone apps, and via an
IRB-approved user study with 31 participants. We show
that ReCon is accurate, efficient, and identifies a wider
range of PII than previous approaches.

1 Introduction
There has been a dramatic shift toward using mobile de-
vices such as smartphones and tablets as the primary in-
terface to access Internet services. Unlike their fixed-line
counterparts, these devices also offer ubiquitous mobile
connectivity and are equipped with a wide array of sen-
sors (e.g. GPS, camera, and microphone).

The combination of rich sensors and ubiquitous con-
nectivity make these devices perfect candidates for pri-
vacy invasion. Apps extensively track users and leak
their personally identifiable information (PII) [13,18,22,
28, 47], and users are generally unaware and unable to
stop them [16, 24]. Cases of PII leaks dramatically in-
creased from 13.45% to 49.78% from 2010 and 2014,
and the vast majority of these leaks occur over IP net-
works (less than 1% of apps leak data over SMS) [36].

Previous attempts to address PII leaks face challenges
of a lack of visibility into network traffic generated by
mobile devices and the inability to control the traffic.
Passively gathered datasets from large mobile ISPs [47,
49] provide visibility but give users no control over net-
work flows. Likewise, custom Android extensions that
are often integrated in dynamic analysis tools provide
control over network flows but measurement visibility

is limited to the devices running these custom OSes or
apps [19], often requiring warranty-voiding “jailbreak-
ing”. Static analysis tools can identify PII leaks based
on the content of the code implementing an app, but suf-
fer from imprecision and cannot defend against dynamic
code loading at run time.

We argue that improving mobile privacy requires (1)
trusted third-party systems that enable auditing and con-
trol over PII leaks, and (2) a way for such auditors to
identify PII leaks. Our key observation is that a PII leak
must (by definition) occur over the network, so interpos-
ing on network traffic is a naturally platform-independent
way to detect and mitigate PII leaks. Based on this in-
sight, we propose a simpler, more effective strategy than
previous approaches: interposing on network traffic to
improve visibility and control for PII leaks.

Using this approach, we focus on the problem of iden-
tifying and mitigating PII leaks at the network level. We
describe the design and implementation of a system to
address this problem called ReCon, which detects PII
leaks from network flows alone, presents this informa-
tion to users, and allows users fine-grained control over
which information is sent to third parties. We use ma-
chine learning and crowdsourcing-based reinforcement
to build classifiers that reliably detect PII in network
flows, even when we do not know a priori what infor-
mation is leaked and in what format. To address flows
using SSL or obfuscation, we describe techniques that
allow our system to detect PII leaks in encrypted flows
with user opt in, and adapt to obfuscation.1

By operating on network traffic alone, ReCon can be
deployed in mobile networks [4], in home networks, in
the cloud, or on mobile devices. ReCon is currently de-
ployed using VPN tunnels to software middleboxes run-
ning on popular cloud platforms, because this allows us
to immediately deploy to arbitrary mobile device OSes
and ISPs.
Our key contributions are as follows:
• A study using controlled experiments to demonstrate

how PII leaks from iOS, Android, and Windows
Phone devices, motivating the need for (and poten-
tial effectiveness of) systems that identify PII leaks
from network flows. We find extensive leaks of de-
vice identifiers (> 50% of the top 100 apps), user

1We support SSL decryption for controlled experiments and private
ReCon instances, but disable them in user studies for privacy reasons.

1

identifiers (> 14% of top 100 Android/iOS apps), lo-
cations (14-26% of top 100 Android/iOS apps) and
even passwords (3 apps) in plaintext traffic.

• An approach to detect and extract PII leaks from
arbitrary network flows, using machine learning in-
formed by extensive ground truth for more than
72,000 flows generated by mobile apps.

• A system that enables users to view PII leaks
from network flows, provide feedback about relevant
leaks, and optionally modify leaks.

• An evaluation of our system, showing it is efficient
(classification can be done in less than one ms), and
that it accurately identifies leaks (with 98.1% accu-
racy for the vast majority of flows in our dataset). We
show that a simple C4.5 Decision Tree (DT) classifier
is able to identify PII leaks with accuracy comparable
to several ensemble methods atop DTs (AdaBoost,
Bagging, and Blending) that take significantly more
processing time (by a factor of 7.24).

• A comparison with three alternative techniques for
detecting PII leaks using information flow analysis.
We show that overall ReCon finds more PII leaks
than all three approaches. Further, ReCon can lever-
age information flow analysis techniques to improve
its coverage, as we demonstrate in §5.3.

• A characterization of our approach on traffic gener-
ated by user devices as part of an IRB-approved user
study. We demonstrate that our approach success-
fully identifies PII leaks (with users providing 4,250
labels for PII leaks) and characterize how these users’
PII is leaked “in the wild.” For example, we find sen-
sitive information such as usernames and passwords
(10 apps) being leaked in plaintext flows, in addition
to personal attributes such as gender and locations.

In the next section, we motivate our work using the re-
sults of controlled experiments identifying extensive in-
formation leakage in popular apps. We then describe the
design (§3) and implementation (§4) of ReCon. We eval-
uate the effectiveness of our approach using controlled
experiments and data from users in §5. We discuss re-
lated work in §6 and conclude in §7.

2 Motivation and Challenges

In this section, we use controlled experiments to mea-
sure PII leakage with ground-truth information. We find
a surprisingly large volume of PII leaks from popular
apps from four app stores, particularly in plaintext (unen-
crypted) flows. Based on these results, we identify sev-
eral core challenges for detecting PII leaks when we do
not have ground-truth information, i.e. for network traf-
fic generated by arbitrary users’ devices. In the next sec-
tion, we describe how to automatically infer PII leaks in

network flows when the contents of PII is not known in
advance.

2.1 What is PII?

Personally identifiable information (PII) is a generic term
referring to “information which can be used to distin-
guish or trace an individual’s identity” [30]. These can
include geographic locations, unique identifiers, phone
numbers and other similar data.

Central to this work is identifying PII leaked by apps
over the network. In this paper, we define PII to be ei-
ther (1) Device Identifiers specific to a device or OS
installation (ICCID, IMEI, IMSI, MAC address, An-
droid ID, Android Advertiser ID, iOS IFA ID, Windows
Phone Device ID), (2) User Identifiers, which identify
the user (name, gender, date of birth, email address,
mailing address, relationship status), (3) Contact Infor-
mation (telephone numbers, address book information),
(4) Location (GPS latitude/longitude, zip code), or (5)
Credentials (username, password). This list of PII is
informed by information leaks observed in this study.
While this list is not exhaustive, we believe it covers most
of the PII that concerns users. We will update the list of
tracked PII as we learn of additional types of PII leaks.

2.2 Controlled Experiments

Our goal with controlled experiments is to obtain
ground-truth information about network flows generated
by apps and devices. We use this data to identify PII in
network flows and to evaluate ReCon (§5).

To capture privacy leaks regardless of the OS or net-
work that the device uses, we employ Meddle [40]. Med-
dle provides visibility into network traffic through redi-
rection, i.e. sending all device traffic to a proxy server
using native support for virtual private network (VPN)
tunnels. Once traffic arrives at the proxy server, we use
software middleboxes to intercept and modify the traffic.
We additionally use SSLsplit [7] to decrypt and inspect
SSL flows only during our controlled experiments where
no human subject traffic is intercepted.
Device setup. We conducted our controlled experi-
ments using Android devices (running Android 5.1.1), an
iPhone (running iOS 8.4.1) and a Windows Phone (run-
ning Windows 8.10.14226.359). We start each set of ex-
periments with a factory reset of the device followed by
connecting the device to Meddle.
Manual tests. We manually test the 100 most popular
free apps for Android, iOS, and Windows Phone from
the Google Play store, the iOS App Store, and the Win-
dows Phone Store on August 9, 2015 as reported by App
Annie [2]. For each app, we install it, interact with it for
up to 5 minutes, and uninstall it. We give apps permis-
sion to access to all requested resources (e.g. contacts or
location). This allows us to characterize real user interac-

2

tions with popular apps in a controlled environment. We
enter unique and distinguishable user credentials when
interacting with apps to easily extract the corresponding
PII from network flows (if they are not obfuscated).
Automated tests. We include fully-automated experi-
ments on the 850 of the top 1,000 Android apps from
the free, third-party Android market AppsApk.com [3]
that were successfully downloaded and installed on an
Android device.2 We perform this test because Android
users can install third-party apps without rooting their
device. Our goal is to understand how these apps differ
from those in the standard Google Play store, as they are
not subject to Google Play’s restrictions and vetting pro-
cess. We automate experiments using adb to install each
app, connect the device to the Meddle platform, start the
app, perform approximately 10,000 actions using Mon-
key [8], and finally uninstall the app and reboot the device
to end any lingering connections. We limit the automated
tests to Android devices because iOS and Windows do
not provide equivalent scripting functionality.
Analysis. We use tcpdump and bro to analyze network
traffic, then search for the conspicuous PII that we loaded
onto devices and used as input to text fields. We classify
some of the destinations of PII leaks as trackers using a
publicly available database of tracker domains [1], and
recent research on mobile ads [17, 27, 35].

2.3 PII Leaked from Popular Apps

We use the traffic traces from our controlled experiments
to identify how apps leak PII over HTTP and HTTPS.
For our analysis we focus on the PII in §2.1. Some of
this information may be required for normal app opera-
tion; however, sensitive information such as credentials
should never travel across the network in plaintext.

Table 1 presents PII leaked by iOS, Android and Win-
dows apps in plaintext. Device identifiers, which can be
used to track user’s behavior, are the PII leaked most fre-
quently by popular apps. Table 1 shows that other PII—
user identifiers, contacts, location, and credentials such
as username and password—are also leaked in plain-
text. Importantly, our manual tests identify important
PII not found by automated tests (e.g. Monkey) such as
user identifiers and credentials. Thus, previous studies
based on automation significantly underestimate leakage
and are insufficient to good coverage of PII leaks.
Cross-platform app behavior. We observed that the in-
formation leaked by an app varied across OSes. Of the
top 100 apps for Android, 16 apps are available on all
the three OSes. Of these 16 apps, 11 apps leaked PII in
plaintext on at least one OS: 2 apps leaked PII on all the
three OSes, 5 apps leaked PII in exactly one OS, and the
remaining 4 apps leaked PII in two of the three OSes. A

2There is an overlap of 14 apps between the AppsApk and Google
Play apps we tested, but AppsApk hosts significantly older versions.

key take-away is that PII analysis based only on one OS
does not generalize to all OSes, suggesting the need for
a cross-platform solution.
Leaks over SSL. During our experiments, we observed
that PII is also sent over encrypted channels. In many
cases, this is normal app behavior (e.g. sending creden-
tials when logging in to a site, or sending GPS data to a
navigation app). However, when such information leaks
to third parties, there is a potential PII leak. We focus
on the PII leaked to tracker domains [1], and find that
6 iOS apps, 2 Android apps and 1 Windows app send
PII to trackers over SSL. The vast majority of this in-
formation is device identifiers, with three cases of user-
name leaks. While SSL traffic contains a minority of PII
leaks, there is clearly still a need to address leaks from
encrypted flows.

Our observations are a conservative estimate of PII
leakage because we did not attempt to detect obfuscated
PII leaks (e.g. via salted hashing), and several apps used
certificate pinning (10 iOS, 15 Android, and 7 Windows
apps) or did not work with VPNs enabled (4 iOS apps
and 1 Android app).3 Our results in §5.3 indicate that
obfuscation is rare today, and our results above show that
significant PII leaks are indeed visible in plaintext.

2.4 Summary and Challenges

While the study above trivially revealed significant PII
leaks from popular mobile apps, several key challenges
remain for detecting PII leaks more broadly.
Detection without knowing PII. A key challenge is how
to detect PII when we do not know the contents of PII
in advance. One strawman is to simply block all adver-
tising and tracking sites. However, this is a blunt and
indiscriminate approach that can disrupt business mod-
els supporting free apps. In fact, the developers of the
top paid iOS app Peace (which blocks all ads) recently
withdrew their app from the App Store due to this [32].

Another strawman solution is to automatically run ev-
ery app in every app store to determine when PII is
leaked. This allows us to formulate a regular expres-
sion to identify PII leaks from every app regardless of
the user: we simply replace the PII with a wildcard.

There are several reasons why this is insufficient to
identify PII leaks for arbitrary user flows. First, it is im-
practically expensive to run this automation for all apps
in every app store, and there are few tools for doing this
outside of Android. Second, it is difficult (if not impos-
sible) to use automation to explore every possible code
path that would result in PII leaks, meaning this approach
would miss significant PII. Third, this approach is incred-
ibly brittle – if a tracker changes the contents of flows
leaking PII at all, the regular expression would fail.

3For more details, see Appendix A.1

3

Apps leaking a given PII
Testing # of Device User Contact

OS Store Technique Apps Identifier Identifier Info. Location Credentials
iOS App Store Manual 100 47 (47.0%) 14 (14.0%) 2 (2.0%) 26 (26.0%) 8 (8.0%)
Android Google Play Manual 100 52 (52.0%) 15 (15.0%) 1 (1.0%) 14 (14.0%) 7 (7.0%)
Windows WP Store Manual 100 55 (55.0%) 3 (3.0%) 0 (0.0%) 8 (8.0%) 1 (1.0%)
Android AppsApk Auto.(Monkey) 850 155 (18.2%) 6 (0.7%) 8 (0.9%) 40 (4.7%) 0 (0.0%)
Android Google Play Auto.(Monkey) 100 52 (52%) 0 (0.0%) 0 (0.0%) 6 (6%) 0 (0.0%)

Table 1: Summary of PII leaked in plaintext (HTTP) by Android and iOS apps. Popular iOS apps leak location information
more often than other OSes (26 iOS apps leak location info.) while Android and Windows apps are slightly more likely to leak
device identifiers. User identifiers and credentials are leaked across all platforms.

These issues suggest an alternative approach to iden-
tifying PII in network flows: use machine learning to
build a model of PII leaks that accurately identifies them
for arbitrary users. This would allow us to use a small
set of training flows, combined with user feedback about
suspected PII leaks, to inform the identification of a PII
leaks for a large number of apps.
Encryption. It is well known that flows in the mobile en-
vironment increasingly use encryption (often via SSL).
Sandvine reports that in 2014 in North American mobile
traffic, approximately 12.5% of upstream bytes use SSL,
up from 9.78% the previous year [43]. By comparison,
11.8% of bytes came from HTTP in 2014, down from
14.66% the previous year. A key challenge is how to
detect PII leaks in such encrypted flows. ReCon iden-
tifies PII leaks in plaintext network traffic, so it would
require access to the original plaintext content to work.
While getting such access is a challenge orthogonal to
this work, we argue that this is feasible for a wide range
of traffic if users run an SSL proxy on a trusted computer
(e.g. the user’s own computer) or use recent techniques
for mediated access to encrypted traffic [39, 44].
Obfuscation of PII. The parties leaking PII may use
obfuscation to hide their information leaks. In our ex-
periments, we found little evidence of this (§ 5.3). In
the future, we anticipate combining our approach with
static and dynamic analysis techniques to identify how
information is being obfuscated, and adjust our system to
identify the obfuscated PII. For example, using informa-
tion flow analysis, we can reverse-engineer how obfus-
cation is done (e.g. for salted hashing, learn the salt and
hash function), then use this information when analyzing
network traces to identify leaked PII. In the ensuing cat-
and-mouse game, we envision automating this process of
reverse engineering obfuscation.

3 ReCon Goals and Design
The previous section highlights that current OSes are
not providing sufficient visibility into PII leaks, provide
few options to control it, and consequently significant
amounts of potentially sensitive information is exfiltrated
from user devices. To address this problem, we built Re-

Con, a tool that detects PII leaks, visualizes how users’
information is shared with various sites, and allows users
to change the information shared with them (including
modifying PII or even blocking connections entirely).

The high-level goal of this research is to explore the
extent to which we can address privacy issues in mobile
systems at the network level. More specifically, the sub-
goals of ReCon are as follows:

• Accurately identify PII in network flows, without re-
quiring knowledge of users’ PII a priori.

• Improve awareness of PII leaks by presenting this in-
formation to users.

• Automatically improve the classification of sensitive
PII based on user feedback.

• Enable users to change these flows by modifying or
removing PII.

To achieve the first three goals, we determine what PII
is leaked in network flows using network trace analysis,
machine learning, and user feedback. We achieve the
last goal by providing users with an interface to block
or modify the PII shared over the network. This paper
focuses on how to address the research challenges in de-
tecting and revealing PII leaks; as part of ongoing work
outside the scope of this paper, we are investigating other
UIs for modifying PII leaks, how to use crowdsourcing to
help design PII-modifying rules, and how we can use Re-
Con to provide other types of privacy (e.g. k-anonymity).

Figure 1 presents the architecture of the ReCon sys-
tem. In the “offline” phase, we use labeled network
traces to determine which features of network flows to
use for learning when PII is being leaked, then train
a classifier using this data, finally producing a model
for predicting whether PII is leaked. When new net-
work flows enter ReCon (the “online” phase), we use
the model to determine whether a flow is leaking PII
and present the suspected PII leak to the user via the Re-
Con Web UI (Fig. 2). We collect labels from users (i.e.
whether our suspected PII is correct) via the UI and inte-
grate the results into our classifier to improve future pre-
dictions (left). In addition, ReCon supports a map view,
where we display the location information that each do-

4

Features

OFFLINE

ONLINE

Training

Model Prediction User
Interface

Rewriter

Model

User Feedback

Flows

Flows

Figure 1: ReCon architecture. We select features and train
a model using labeled network flows, then use this model to
predict whether new network flows are leaking PII. Based on
user feedback, we retrain our classifier.

(a) PII leaks and actions (b) Map view of location leaks
Figure 2: Screen capture of the ReCon user interface. Users
can view how their PII is leaked, validate the suspected PII
leaks, and create custom filters to block or modify leaks.

main is learning about the user (right). By using a Web
interface, ReCon users can gain visibility and control
into their PII leaks without installing an app. A demo
of ReCon is available at http://goo.gl/rAFzxc.

To support control of PII, ReCon allows users to in-
struct the system to replace the PII with other text (or
nothing) for future flows (see the drop-down boxes in
Fig. 2(a)). We allow users to specify blocking or replace-
ment of PII based on PII category (shown in the figure),
domain, or app. This protects users’ PII for future net-
work activity, but does not entirely prevent PII from leak-
ing in the first place. To address this, we support inter-
active PII labeling and filtering, using push notifications
or other channels to notify the user of leaks immediately
when they are detected (as done in a related study [11]).4

4Push notifications require a companion app, and we currently sup-
port only Android (we plan to release iOS and Windows versions soon).

3.1 Non-Goals

ReCon is not intended as a blanket replacement for exist-
ing approaches to improve privacy in the mobile environ-
ment. For example, information flow analysis [19] may
identify PII leaks not revealed by ReCon. In fact, ReCon
can leverage information flow analysis techniques to im-
prove its coverage, as we demonstrate in §5.3. Impor-
tantly, ReCon allows us to identify and block unobfus-
cated PII in network flows from arbitrary devices without
requiring OS modifications or taint tracking.

3.2 Deployment Model and User Adoption

Because ReCon needs access only to network traffic to
identify and modify PII leaks, it admits a variety of de-
ployment models, e.g., in the cloud, in home devices,
inside an ISP, or on mobile devices. We are currently
hosting this service on Meddle in a cloud-based deploy-
ment because it provides immediate cross-platform sup-
port with low overheads [40]. We are also in discussions
with Telefonica to deploy ReCon on their Awazza [4]
APN proxy, which has attracted thousands of users.

3.3 Protecting User Privacy

An important concern with a ReCon user study is pri-
vacy. Using an IRB-approved protocol [6], we encrypt
and anonymize all captured flows before storing them
(more details in Appendix A.2). The secret key is stored
on a separate secure server and users can delete their data
at any time. We will make the ReCon software publicly
available. For those who want to run their own ReCon
instance (e.g. if they do not want to participate in our
study), the ReCon system requires only that a user has
root on a modern Linux OS. ReCon can be deployed in
a single-machine instance on a home computer, as Rasp-
berry Pi plugged into a home router, a dedicated server
in an enterprise, on the device itself, or VM in the cloud.
One can also selectively route traffic to different ReCon
instances, e.g., to a cloud instance for HTTP traffic and a
trusted home instance to decrypt HTTPS connections to
identify PII leaked over SSL.5

4 Recon Implementation
We now discuss several key aspects of our system im-
plementation. We evaluate our design decisions in the
following section. The ReCon pipeline begins with pars-
ing network flows, then passing each flow to a machine
learning classifier for labeling as a PII leak or not.

4.1 Machine Learning Techniques

We use the weka data mining tool [23] to train classifiers
that predict PII leaks. We train our classifier by extract-

5See Appendix A.4 for more details about privacy-protecting de-
ployment models.

5

ing relevant features and providing labels for flows that
leak PII as described below.
Feature extraction. The problem of identifying whether
a flow contains a PII leak is similar to the document
classification problem,6 so we use the “bag-of-words”
model [26]. In this model, all flows are separated into
words (using tokens) to form a set of all words in the
dataset. Then for each flow, we produce a vector of bi-
nary values where each word that appears in a flow is set
to 1, and each word that does not is set to 0.

A key challenge for feature extraction in network
flows is that there is no standard token (e.g. whitespace
or punctuation) to use for splitting flows into words. For
example, a colon (:) could appear as part of a MAC
address (e.g. 02:00:00:00:00), a time-of-day (e.g.
11:59), or can even be a delimiter in JSON data (e.g.
username:user007). Further frustrating attempts to
select features, one domain uses “=>” as a delimiter (in
username =>user007). In these cases, there is no
single technique that covers all flows. Instead, we use
a number of different delimiters “,;/(){}[]” to han-
dle the common case, and treat ambiguous delimiters by
inspecting the surrounding content to determine the en-
coding type based on context (e.g. looking at content-en-
coding hints in the HTTP header or whether the content
appears in a GET parameter).
Feature selection. A simple bag-of-words model pro-
duces too many features to be useful for training accurate
classifiers that make predictions within milliseconds (to
intercept PII leaks in real time). To reduce the feature set,
we make the assumption that low-frequency words are
unlikely to be associated with PII leaks, because when
PII does leak, it rarely leaks just once. On the other hand,
session keys and other ephemeral identifiers tend to ap-
pear in exactly one flow. Based on this intuition, we ap-
ply a simple threshold-based filter that removes a feature
if its word frequency is too small. We select a reasonable
threshold value empirically, by balancing accuracy and
classification time for labeled data (discussed in §5.2.3).

While the above filter removes ephemeral identifiers
from our feature set, we must also address the prob-
lem of words that commonly appear. Several impor-
tant examples include information typically found in
HTTP flows, such as “content-length:”, “en-us”, and “ex-
pires”. We thus add stop-word-based filtering on HTTP
flows, where the stop words are determined by term
frequency—inverse document frequency (tf-idf). We in-
clude only features that have fairly low tf-idf values.
Per-domain and general classifiers. We find that PII
leaks to the same destination domain use the same (or
similar) data encodings to transfer data over the network.
Based on this observation, we build per-domain mod-

6Using network flows as a documents, and structured data as words.

els (one classifier for each destination domain) instead
of one single general classifier. We identify the domain
associated with each flow based on the Host: parameter
in the HTTP header. If this header is not available, we
can also identify the domain associated with each IP ad-
dress by finding the corresponding DNS lookup in packet
traces. This improves prediction accuracy because the
classifier typically needs to learn a small set of associa-
tion rules. Further, per-domain classifiers improve per-
formance in terms of lower-latency predictions, impor-
tant for detecting and intercepting PII leaks in-band.

The above approach works well if there is a suffi-
ciently large sample of labeled data to train to the per-
domain classifier. For domains that do not see sufficient
traffic, we build a (cross-domain) general classifier. The
general classifier tends to have few labeled PII leaks,
making it susceptible to bias (e.g. 5% of flows in our
general classifier are PII leaks). To address this, we use
undersampling on negative samples, using 1/10 sampling
to randomly choose a subset of available samples.

4.2 Automatically Extracting PII

A machine learning classifier indicates whether a flow
contains PII, but does not indicate which content in the
flow is a PII leak. The latter information is critical if we
want to present users with information about their leaks
and allow them to validate the predictions.

A key challenge for extracting PII is that the key/value
pairs used for leaking PII vary across domains and de-
vices; e.g. the key “device id” or “q” might each indi-
cate an IMEI value for different domains, but “q” is not
always associated with a PII leak. While we found no
solution that perfectly addresses this ambiguity, we de-
veloped effective heuristics for identifying “suspicious”
keys that are likely associated with PII values.

We use two steps to automatically extract PII leaks
from a network flows classified as a leak. The first step
is based on the relative probability that a suspicious key
is associated with a PII leak, calculated as follows:

Ptype,key =
KPII
Kall

where type is the PII type (e.g. IMEI, e-mail address),
key is the suspicious key for that type of PII, KPII is the
number of times the key appeared in PII leaks, and Kall is
the number times the key appeared in all flows. The sys-
tem looks for suspicious keys that have Ptype,key greater
than a threshold. We set this value to an empirically de-
termined value, 0.2, based on finding the best trade-off
between false positives (FPs) and true positives (TPs) for
our dataset. For users wanting more or less sensitivity,
we will make this a configurable threshold in ReCon (e.g.
if a user wants to increase the likelihood of increasing
TPs at the potential cost of increased FPs).

6

In the second step, we use a decision tree classifier
structure, and make the observation that the root of each
decision tree is likely a key corresponding to a PII value.
We thus add these roots to the suspicious key set and
assign them a large P value.

5 Evaluation
In this section, we evaluate the effectiveness of ReCon in
terms of accuracy and performance. First, we describe
our methodology, then we describe the results from con-
trolled experiments, and we conclude by presenting the
results of a user study, focusing on the impact of user
feedback and characterizing observed PII leaks.

To summarize the key findings: 1) we demonstrate
that a decision-tree classifier is both accurate (98.1%
overall) and efficient (trains in seconds, predicts in sub-
milliseconds); 2) ReCon not only identifies more PII than
static and dynamic information-flow analysis techniques,
but also can learn from the results of these approaches
to improve its coverage of PII leaks; 3) our user study
shows that our approach accurately identifies substantial
amounts of PII leaks, and that users changed their app
usage in response to using our tool. Note that this paper
focuses on reliably identifying leaks and enabling con-
trol, but does not evaluate the control functionality.

5.1 Dataset and Methodology

To evaluate ReCon accuracy, we need app-generated
traffic and a set of labels indicating which of the corre-
sponding flows leak PII. For this analysis, we reuse the
data from controlled experiments presented in §2.2; Ta-
ble 2 summarizes this dataset using the number of flows
generated by the apps, and fraction that leak PII. We
identify that more than 6,500 flows leak PII, and a signif-
icant fraction of those flows leak PII to known trackers.

We use this labeled dataset to train classifiers and eval-
uate their effectiveness using the following metrics. We
define a positive flow to be one that leaks PII; likewise a
negative flow is one that does not leak PII. A false posi-
tive occurs when a flow does not leak PII but the classifier
predicts a PII leak; a false negative occurs when a flow
leaks PII but the classifier predicts that it does not. We
measure the false positive rate (FPR) and false negative
rate (FNR); we also include the following metrics:

• Correctly classified rate (CCR): the sum of true
positive (TP) and true negative (TN) samples di-
vided by the total number of samples. CCR = (T N+
T P)/(T N +T P+FN +FP).
A good classifier has a CCR value close to 1.

• Area under the curve (AUC): where the curve refers
to receiver operating characteristic (ROC). In this ap-
proach, the x-axis is the false positive rate and y-axis
is the true positive rate (ranging in value from 0 to
1). If the ROC curve is x = y (AUC = 0.5), then the

classification is no better than randomly guessing. A
good classifier has a AUC value near 1.

To evaluate the efficiency of the classifier, we inves-
tigate the runtime (in milliseconds) for predicting a PII
leak and extracting the suspected PII. We want this value
to be significantly lower than typical Internet latencies.

We use the weka data mining tool to investigate the
above metrics for several candidate machine learning ap-
proaches to identify a technique that is both efficient and
accurate. Specifically, we test Naive Bayes, C4.5 Deci-
sion Tree (DT) and several ensemble methods atop DTs
(AdaBoost, Bagging, and Blending).

5.2 Lab Experiments

In this section, we evaluate the impact of different im-
plementation decisions and demonstrate the overall ef-
fectiveness of our adopted approach.

5.2.1 Machine Learning Approaches

A key question we must address is which classifier to
use. We believe that a DT-based classifier is a reasonable
choice, because most PII leaks occur in structured data
(i.e. key/value pairs), and a decision tree can naturally
represent chained dependencies between these keys and
the likelihood of leaking PII.

To evaluate this claim, we tested a variety of classi-
fiers according to the accuracy metrics from the previous
section, and present the results in Fig. 3. We plot the
accuracy using a CDF over the domains that we use to
build per-domain classifiers as described in §4.1. The top
two graphs (overall accuracy via CCR and AUC), show
that Naive Bayes has the worst performance, and nearly
all the DT-based ensemble methods have high CCR and
AUC values. (Note that the x-axis does not start at 0.)

Among the ensemble methods, Blending with DTs
and k-nearest-neighbor (kNN) yields the highest accu-
racy; however, the resulting accuracy is not significantly
better than a simple DT. Importantly, a simple DT takes
significantly less time to train than ensemble methods.
For ensemble methods, the training time largely depends
on the number of iterations for training. When we set
this value to 10, we find that ensemble methods take
7.24 times longer to train than a simple DT on the same
dataset. Given the significant extra cost with minimal
gain in accuracy, we currently use simple DTs.

The bottom figures show that most DT-based clas-
sifiers have zero FPs (71.4%) and FNs (76.2%) for
the majority of domains. Further, the overall accuracy
across all per-domain classifiers is >98.1%. The do-
mains with poor accuracy are the trackers rlcdn.com
and turn.com, due to the fact their positive and neg-
ative flows are very similar. For example, the key
partner uid is associated both with an Android ID
value and another unknown identifier.

7

Manual tests Automated tests (Monkey)
OS (Store) iOS (App) Android (Play) Windows (WP) Android (Play) Android (AppsApk)
Apps tested 100 100 100 100 850
HTTP flows 14683 14355 12487 7186 17499

Leaking PII 845 1800 969 1174 1776
Flows to trackers 1254 1854 1253 1377 5893

Leaking PII to trackers 508 567 4 414 649

Table 2: Summary of HTTP flows from controlled experiments. Manual tests generated similar numbers of flows across plat-
forms, but Android leaked proportionately more PII. Collectively, our dataset contains more than 6500 flows with PII leaks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

General Classifier

C
D

F
 o

f
N

u
m

b
e

r
o

f
D

o
m

a
in

s

Correctly Classified Rate

Decision Tree
AdaBoost

Bagging
Blending

Naive Bayes

(a) CCR (x-axis does not start at 0)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

General Classifier

C
D

F
 o

f
N

u
m

b
e

r
 o

f
D

o
m

a
in

s

Area Under Curve

(b) AUC (x-axis does not start at 0)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

General Classifier

C
D

F
 o

f
N

u
m

b
e

r
o

f
D

o
m

a
in

s

False Negative Rate

(c) FNR

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

General Classifier

C
D

F
 o

f
N

u
m

b
e

r
 o

f
D

o
m

a
in

s

False Positive Rate

(d) FPR
Figure 3: CDF of per-domain per-device classifier accuracy, for alternative classification approaches. For the 42 per-domain
classifiers, DT-based classifiers outperform Naive Bayes, and they exhibit good accuracy (high CCR and AUC, low FPR and FNR).
The vertical line depicts accuracy when using one classifier across all domains, which leads to significantly worse performance.

To provide intuition as to why DTs work well, and
why PII leak detection presents a nontrivial machine-
learning problem, we include several examples of DTs
trained using our data. Of course, some cases of PII leaks
are simple: Fig. 4(a) shows that Android Advertiser ID
is always leaked to the tracker applovin.com when
the text idfa is present in network traffic. Other cases
are not trivial, as seen in Fig. 4(b). Here, we find that
auid is not always associated with an IMEI value, and
the DT captures the fact that the IMEI will not be present
for a getImage.php5 request if the urid is present.
Finally, Fig. 4(c) gives an example of a non-trival DT for
a different type of PII—e-mail address. Here, the term
email appears in both positive and negative flows, so
this feature cannot be used alone. However, our classifier
learns that the leak happens in a /user/ request when
the terms session and deviceId are not present in
the flow.7 Overall, 62% of DTs are the simple case
(Fig. 4(a)), but more than a third have a depth greater
than two and thus indicate a significant fraction of cases
where association rules are nontrivial.

7Note that in this domain deviceId is actually used for an app-
specific identifier, not a device identifier.

5.2.2 Per-Domain Classifiers

We now evaluate the impact of using per-domain classi-
fiers instead of one classier for all flows. We build per-
domain classifiers for all domains with greater than 100
samples (i.e. labeled flows), at least one of which leaks
PII. For the remaining flows, there is insufficient training
data to inform a classifier, so we create a general classi-
fier based on the assumption that a significant fraction of
the flows use a common structure for leaking PII.8

We evaluate the impact of per-domain classifiers on
overall accuracy in Figure 3. The vertical lines in the sub-
graphs represent values for the general classifier, which is
trained using all flows from all domains. We can see that
the general classifier has lower accuracy (80.0% CCR)
than >95% of the per-domain classifiers. Further, train-
ing such general classifiers is expensive in terms of run-
time: it takes minutes to train per-domain classifiers for
thousands of flows, but it takes hours to train general
classifiers for the same flows.

8Note that once ReCon acquires sufficient labeled data (e.g. from
users or controlled experiments) for a destination domain, we create a
per-domain classifier.

8

Flow contains
idfa

Negative Positive

No Yes

CCR: 99.92%
FPR: 0%
FNR: 0.52%
AUC: 0.9950

Domain: applovin.com
In training set:
 #Positive: 191
 #Negative: 1010

(a) Simple DT for device identifier

CCR: 99.09%
FPR: 0.5%
FNR: 4.1%
AUC: 0.9900

Domain: myadas.com
In training set:
 #Positive: 72
 #Negative: 770Flow contains

534.30Nexus

Negative
Positive

No Yes

Flow contains
auid

Flow contains
conn

Flow contains
/getImage.php5

No No Yes

Negative

Flow contains
urid

Yes

Yes

Negative

No

NegativePositive
No Yes

(b) Non-trivial DT for device identifier

CCR: 100%
FPR: 0%
FNR: 0%
AUC: 1

Domain: oovoo.com
In training set:
 #Positive: 84
 #Negative: 40

Flow contains
session

Negative

No Yes

Flow contains
deviceId

Positive

YesNo

Flow contains
/user/

Negative

Negative

No
Yes

(c) Non-trivial DT for e-mail address
Figure 4: Example decision trees (DTs) for ReCon’s per-domain classifiers. The classifier beings at the root (top) node, and
traverses the tree based on whether the term at each node is present. The leaves (boxes) indicate whether there is a PII leak (positive)
or not (negative) for each path. The top right of each figure shows the number of positive/negative samples used to train each DT.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 10 20 30 40 50 60 70 80 90 100
 3.8

 3.9

 4

 4.1

 4.2

 4.3

 4.4

 4.5

N
u
m

b
e
r

o
f
F

e
a
tu

re
s

T
ra

in
in

g
 T

im
e
 (

s
e
c
o
n
d
s
)

Threshold for word occurence

Number of Features
Training Time

(a) #features changes as threshold changes

 0.98

 0.985

 0.99

 0.995

 1

 5
0

 1
0
0

 1
5
0

 2
0
0

 2
5
0

 3
0
0

 3
5
0

 4
0
0

 3.8

 3.9

 4

 4.1

 4.2

 4.3

 4.4

 4.5
O

v
e
ra

ll
A

c
c
u
ra

c
y

T
ra

in
in

g
 T

im
e
 (

s
e
c
o
n
d
s
)

Number of Features

Overall Accuracy
Area Under the curve

Training Time

(b) accuracy and training time over #features
(y-axes do not start at 0)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 5
0

 1
0
0

 1
5
0

 2
0
0

 2
5
0

 3
0
0

 3
5
0

 4
0
0

 3.8

 3.9

 4

 4.1

 4.2

 4.3

 4.4

 4.5

R
a
te

T
ra

in
in

g
 T

im
e
 (

s
e
c
o
n
d
s
)

Number of Features

False Negative Rate
False Positive Rate

Training Time

(c) false negative and false positive rate and
training time over #features

Figure 5: Feature selection for the tracker domain mopub.com. Using≈200 features leads to high accuracy and low training times;
however, adding more features increases training time with no benefit to accuracy.

5.2.3 Feature Selection

The accuracy of the classifiers described above largely
depends on correctly identifying the subset of features
for training. Further, the training time for classifiers in-
creases significantly as the number of features increases,
meaning that an efficient classifier requires culling of
unimportant features. A key challenge in ReCon is de-
termining how to select such features given the large po-
tential set derived from the bag-of-words approach.

We use Figure 5 to illustrate this problem and how we
address it. Here, we focus on statistics for the tracker
domain mopub.com (266 flows out of 1276 leak PII);
other domains exhibited similar properties.

First, we focus on the threshold to use for includ-
ing features in our training set. As described in Sec-
tion 4.1, we filter out features from words that appear
infrequently. Fig. 5(a) shows the impact of this decision
on training time, where the x-axis is the minimum num-
ber of appearances for a word to be included as a feature,
and the y-axis is the time required to train a classifier on
the resulting features. The figure shows that including
all words (threshold = 1) significantly increases training
time, but there is a minimal impact on training time if the
threshold is greater than or equal to 20. The correspond-
ing number of features decreases from 450 to 29 as the
threshold for word occurrence increases from 1 to 99.

Picking the right number of features is also important
for classifier accuracy, as too many features may lead to
overfitting and too few features may lead to an incom-

plete model. We evaluate this using Fig. 5(b), where the
x-axis is the number of features, the left y-axis is accu-
racy (the y-axis does not start at zero), and the right y-
axis is training time. Even small numbers of features lead
to high accuracy for this domain, but increasing the num-
ber of features significantly beyond 250 does not improve
performance at all (but does increase training time). We
see a similar effect on the FP rate in Fig. 5(c).

While the training time may not seem particularly high
in this context, we note that this cost must be incurred
for each domain and each time we want to update the
classifier with user-labeled flows. With potentially thou-
sands of flows and labels in large-scale deployments,
such training times can significantly affect the scalabil-
ity and responsiveness of ReCon.

With this in mind, we propose the following strate-
gies for picking threshold values. First, we can use the
above analysis to find the best threshold, then periodi-
cally update this threshold based on new labeled data.
Second, we can pick a fixed threshold based on the aver-
age threshold across all domains (word frequency = 21).
We evaluated the impact of these two approaches, and
found they were nearly identical for our dataset. This
suggests that a fixed value is sufficient for our dataset,
but we propose periodically updating this threshold by
performing the above analysis daily or weekly as a low-
priority background process.

9

5.2.4 PII Extraction Strategies

As discussed in Section 4.2, we use two heuristics to
identify key/value pairs that are likely to leak PII. We use
our dataset to evaluate this approach, and find that the FP
and FN rates are 2.2% and 3.5%, respectively. By com-
parison, a naive approach that treats each key/value pair
equally yields FP and FN rates of 5.1% and 18.8%, re-
spectively. Our approach is significantly better than this
naive approach, and our FP and FN rates are sufficiently
low to correctly extract PII the vast majority of the time.

5.3 Comparison with Information Flow Analysis

Our labeled dataset in the above analysis may miss PII
leaks that are obfuscated or otherwise hidden from our
analysis. We now evaluate our approach by compar-
ing with one that is resilient to such issues: information
flow analysis (IFA). We experiment with three IFA tech-
niques: (1) static IFA with FlowDroid [10], (2) dynamic
IFA with TaintDroid [19] (via Andrubis [36]), and (3)
AppAudit [48], which uses a combination of both static
and approximated dynamic analysis. Each of these tools
has limitations: some are very resource intensive and
some pose restrictions on the type of apps they can suc-
cessfully analyze.
Static IFA. FlowDroid detects PII leaks as data flowing
between sensitive sources and sinks, which are config-
ured via a list of Android API calls. However, the anal-
ysis is quite resource intensive: for 7.83% of apps, our
available memory of 8GB was insufficient for analysis;
for 25.60% of apps the analysis exceeded our analysis
timeout of 30 minutes. Further, the detected leaks are re-
ported as paths between the API calls of interest and are
thus difficult to interpret for non-expert users.
Dynamic IFA. Andrubis is an app analysis sandbox that
uses TaintDroid to identify PII leaks from Android apps
during dynamic analysis. Andrubis installs each app in
an emulated Android environment and monitors its be-
havior for 240 seconds. Besides calling all of the app’s
registered components and simulating common events,
such as incoming SMS and location changes, it uses
Monkey [8] to generate approximately 8,000 pseudo-
random streams of user events. In addition to detailed
analysis report including all detected data leaks, it also
provides the recorded network packet traces. However,
this analysis fails for 38.57% of apps because they ex-
ceed the file size and/or API level limit of Andrubis.
Hybrid IFA. AppAudit flags functions that potentially
leak PII through static analysis and then performs a sim-
ulated dynamic analysis to filter out candidates functions
to confirm PII leaks. AppAudit reports leaks to the net-
work, file system and through SMS from various sources
such as the location, contacts and device specific iden-
tifiers. The analysis failed for 17.14% of apps, but run-
times are very fast compared to the previous approaches

Type of PII being leaked
leaks Device User Con- Loca- Cred-
detected Id. Id. tacts tion entials

A
nd

ru
bi

s plaintext 173 N-A 10 8 N-A
obfuscated 124 N-A 16 0 N-A
incorrect 140 N-A 24 6 N-A
Total 457 N-A 50 14 N-A

R
eC

on TP 146 17 7 35 0
FN 27 0 0 0 0

Table 4: Comparison with Andrubis (which internally uses
TaintDroid), for Android apps only. TaintDroid has a higher
false positive rate than ReCon, but catches more device identi-
fiers. After retraining ReCon with these results, ReCon cor-
rectly identifies all PII leaks. Further, ReCon identifies PII
leaks that TaintDroid does not.

with an average of 14.16s per app. However, as AppAu-
dit only approximates the execution of suspicious func-
tions, it does not record any network packet traces.
Methodology and results. For our comparison we reuse
the 850 apps from AppsApk.com and the top 100 apps
from Google Play from §2.2, and focus on the 280 that
produced network traffic in our experiments. Since static
and hybrid IFA approaches do not provide network flows,
we base our comparison on the number of apps that leak
a certain type of PII. We flag an app as a leaking a cer-
tain type of PII, if any of the tested tools detected a PII
leak in that category, which is the case for 208 apps in
our dataset. Table 3 shows the number and percentage of
apps that were correctly flagged by FlowDroid, Andru-
bis, AppAudit and ReCon. FlowDroid mainly identified
location leaks and the phone number, while AppAudit
mainly identified IMEI leaks. Andrubis performed well
in detecting device identifiers (ICCID, IMEI, IMSI) and
the phone number. Importantly, ReCon identifies more
PII leaks overall (except for contact information), and in
more categories than previous approaches.

The above results are encouraging for ReCon, and
we further investigated mismatches between ReCon and
TaintDroid results, since the latter provides network
traces that we can process via ReCon. Note, as the au-
thors of TaintDroid themselves acknowledge [19], it may
generate false positives (particularly for arrays and IMSI
values), due to propagating taint labels per variable and
IPC message. We thus manually inspected flows flagged
as leaking PII, and discarded cases where the identified
PII did not appear in plaintext network flows (i.e. false
positives). Table 4 shows the results of our analysis,
grouped by PII type.

We use the plaintext leaks identified by Andrubis as
ground truth, and evaluate our system by sending the An-
drubis network traffic through ReCon. The ReCon false
positive rate was quite low (0.11%), but the false negative
rate was relatively high (14.9%). The vast majority of
false negative flows were Device ID leaks (124/457 are

10

Approach #apps leaking PII Device User Contact Info Location Credentials(#reports) Identifier Identifier Information
FlowDroid (Static IFA) 44 (187) 28 (14.58%) × 8 (53.33%) 25 (48.08%) ×
Andrubis (Dynamic IFA) 72 (172) 68 (35.42%) × 9 (60.00%) 3 (5.77%) ×
AppAudit (Hybrid IFA) 46 (232) 42 (21.88%) × 3 (20.00%) 1 (1.92%) ×
ReCon 155 (280) 145 (75.52%) 6 (100%) 4 (26.66%) 29 (55.77%) 0 (-)
Union of all approaches 208 (280) 192 6 15 52 0

Table 3: Comparison of ReCon with information flow analysis tools. This comparison is based on 280 Android apps (apps from
the Google Play and AppsApk dataset for which we observed network flows). We present the number of Android apps detected
as leaking PII, as well as the percentage of leaking apps detected by each tool out of all leaking apps detected by any of the tested
tools in each category (× means the tool does not track that type of information).

obfuscated and 140/457 are false positive reports from
Andrubis). Importantly, when we retrain ReCon’s clas-
sifier with the Andrubis data, we find that all of the false
negatives disappear. Thus, ReCon is adaptive in that
its accuracy should only improve as we provide it more
and diverse sets of labeled data. In the next section we
describe results suggesting that we can also use crowd-
sourcing to provide labeled data.

We also note that ReCon identified several instances of
PII leaks that are not tracked by IFA. These include the
Android ID, MAC address, user credentials (username
and password), gender, birthdays, ZIP codes, and e-mail
addresses.

5.4 User Study

We now describe the results of our IRB-approved user
study, where participants used ReCon for at least one
week and up to 101 days, interacted with our system via
the UI, and completed a follow-up survey. Our study
was biased in that most participants (75%) are students in
computer science and located in the Boston area. While
we cannot claim representativeness, we can use the user
feedback quantitatively, to understand the impact of la-
beling on our classifiers. We also use the study qualita-
tively, to understand what information was leaked from
participant devices but not those in our controlled exper-
iments, and to understand users’ opinions about privacy.

The study includes 31 users in total, with 24 iOS de-
vices and 13 Android devices (some users have more
than one device). We initialized the ReCon classifiers
based on the results of the controlled experiments, then
retrained the classifiers based on user feedback.
Runtime. While the previous section focused on run-
time in terms of training time, an important goal for Re-
Con is to predict and extract PII in-band with network
flows so that we can block/modify the PII as requested
by users. As a result, the network delay experienced by
ReCon traffic depends on the efficiency of the classifier.

We evaluated ReCon performance in terms of PII pre-
diction and extraction times. The combined cost of these
steps is less than 0.25 ms per flow on average (std. dev.
0.88), and never exceeds 6.47 ms per flow. We believe
this is sufficiently small compared to end-to-end delays
10s or 100s of milliseconds in mobile systems.

User feedback. Study participants were asked to view
their PII leaks via the ReCon UI, and label them as cor-
rect or incorrect. As of Sep 22, 2015, our study covers
565,128 flows, of which 7,560 were predicted to contain
PII. Of those, there are 4,077 TP flows, 173 FP flows and
3310 unlabeled flows. Table 5 shows the results across
all users. The users in the study found few cases when Re-
Con incorrectly labeled PII leaks. The vast majority of
unlabeled data is device identifiers, suggesting that users
might not understand or care about this type of leak.

For those flows that were incorrectly labeled, we re-
trained the classifier with these user labels. After this
step, we found 11 false positive flows only, but missed
16 true positive flows (due to using a general classifier).
User survey. To qualitatively answer whether ReCon is
effective, we conducted a survey where we asked partici-
pants “Have you changed your ways of using your smart-
phone and its applications based on the information pro-
vided by our system?” A majority (20/26) of responses
from our users indicated that they found the system use-
ful and changed their habits related to privacy when us-
ing mobile devices (full results in Appendix A.3). This is
in line with results from Balebako et al. [11], who found
that users “do care about applications that share privacy-
sensitive information with third parties, and would want
more information about data sharing.”
PII leak characterization. We now investigate the PII
leaked in the user study. As Table 5 shows, the most
commonly leaked PII is device identifiers, likely used by
advertising and analytic services. The next most com-
mon leak is location, which typically occurs for apps that
customize their behavior based on user location. We also
find user identifiers commonly being leaked (e.g. name
and gender), suggesting a deeper level of tracking than
anonymous device identifiers. Depressingly, even in our
small user study we found 165 cases of credentials being
leaked in plaintext (94 verified by users). These results
highlight the negative impact of closed mobile systems—
even basic security is often violated by sending pass-
words in plaintext (10 apps in our study).

We further investigate the leaks according to OS (Ta-
ble 5). We find that the average iOS user in our study
experienced more data leaks than the average Android

11

Feedback on leaks
Leak Type total correct wrong no label

iO
S

Device ID. 2853 12 165 2676
User ID. 321 103 1 217
Contact Info. 6 3 1 2
Location 3643 3620 5 18
Credential 31 22 0 9

A
nd

ro
id

Device ID. 317 2 0 315
User ID. 31 30 0 1
Contact Info. 8 8 0 0
Location 216 205 0 11
Credential 134 72 1 61

Table 5: Summary of leaks predicted by OS. We observe a
higher number of leaks for iOS because the number of iOS de-
vices (24) is more than the number of Android devices (13).

user, and particularly experienced higher relative rates of
device identifier, location, and credential leaks.

We investigated the above leaks to identify several
apps responsible for “suspicious” leaks. For example,
the ABC Player app is inferring and transmitting the
user’s gender. The Brainscape app leaks user credentials,
including password, in plaintext. Last, All Recipes—
a cookbook app—is tracking user locations even when
there is no obvious reason for it to do so.

6 Related Work
Our work builds upon and complements a series of re-
lated work on privacy and tracking. Early work focused
on tracking via Web browsers [5, 42]. Mobile devices
make significant PII available to apps, and early studies
showed PII such as location, usernames, passwords and
phone numbers were leaked by popular apps [46]. Sev-
eral efforts systematically identify PII leaks from mobile
devices, and develop defenses against them:
Dynamic analysis. One approach, dynamic taint track-
ing, modifies the device OS to track access to PII at
runtime [19] using dynamic information flow analysis,
which taints PII as it is copied, mutated and exfiltrated
by apps. This ensures that all access to PII being tracked
by the OS is flagged; however, it can result in large false
positive rates (due to coarse-granularity tainting), false
negatives (e.g. because the OS does not store leaked PII
such as a user’s password), and incur significant runtime
overheads that discourage widespread use. Running taint
tracking today requires rooting the device, which is typ-
ically conducted only by advanced users, and can void
the owner’s warranty. Other approaches that instrument
apps with taint tracking code still either require modifi-
cations to platform libraries [12], and thus rooting, or re-
signing the app under analysis [41], essentially breaking
Android’s app update and resource sharing mechanisms.
In addition, taint tracking does not address the problem
of which PII leaks should be blocked (and how), a prob-
lem that is difficult to address in practice [27].

Static analysis. Another approach is to perform static
analysis (e.g. using data flow analysis or symbolic ex-
ecution) to determine a priori whether an app will leak
privacy information [9, 10, 15, 18, 20, 25, 29, 31, 38, 48,
50–52]. This approach can avoid run-time overhead by
performing analysis before code is executed, but state-
of-the-art tools suffer from imprecision [14] and sym-
bolic execution can be too time-intensive to be practical.
Further, deploying this solution generally requires an app
store to support the analysis, make decisions about which
kinds of leaks are problematic, and work with developers
to address them. Static analysis is also limited by obfus-
cation, and tends not to handle reflection and dynami-
cally loaded code [53]. A recent study [36] finds dynam-
ically loaded code is increasingly common, comprising
almost 30% of goodware app code loaded at runtime.
Network flow analysis. ReCon analyzes network flows
to identify PII leaks. Previous studies using network
traces gathered inside a mobile network [21, 47], in an
ISP [37], and in a lab setting [33] identified significant
tracking, despite not having access to software instru-
mentation. In this work, we build on these observations
to both identify how users’ privacy is violated and con-
trol these privacy leaks regardless of the device OS or
network being used.

PrivacyGuard [45] and AntMonitor [34] use the An-
droid VPNService API to intercept traffic on Android
devices and perform traffic analysis. A key limitation
of these approaches is they rely on hard-coded identifiers
for PII, or require knowledge of (and direct access to) a
user’s PII to work. Further, these approaches work only
for the Android OS. In contrast, ReCon is cross-platform,
does not require a priori knowledge of PII, and is adap-
tive to changes in how PII leaks.

7 Conclusion

In this paper we presented ReCon, a system that im-
proves visibility and control over privacy leaks in traf-
fic from mobile devices. We argued that since PII leaks
occur over the network, detecting these leaks at the net-
work layer admits an immediately deployable and cross-
platform solution to the problem. Our approach based on
machine learning has good accuracy and low overhead,
and adapts to feedback from users and other sources of
ground-truth information.

We believe that this approach opens a new avenue for
research on privacy systems, and provides opportunities
to improve privacy for average users. We are investi-
gating how to use ReCon to build a system to provide
properties such as k-anonymity, or allow users to explic-
itly control how much of their PII is shared with third
parties—potentially doing so in exchange for micropay-
ments or access to app features (see Appendix A.5).

12

References
[1] Ad blocking with ad server hostnames and

ip addresses. http://pgl.yoyo.org/
adservers/.

[2] App Annie App Store Stats. http://www.
appannie.com/.

[3] AppsApk.com. http://www.appsapk.com/.

[4] AwaZza. http://www.awazza.com/web/.

[5] Lightbeam for Firefox. http://www.
mozilla.org/en-US/lightbeam/.

[6] Meddle IRB consent form. https:
//docs.google.com/forms/d/
1Y-xNg7cJxRnlTjH_56KUcKB_
6naTfRLqQlcZmHtn5IY/viewform.

[7] SSLsplit - transparent and scalable SSL/TLS inter-
ception. http://www.roe.ch/SSLsplit.

[8] UI/Application Exerciser Monkey. https:
//developer.android.com/tools/
help/monkey.html.

[9] Y. Agarwal and M. Hall. ProtectMyPrivacy: De-
tecting and Mitigating Privacy Leaks on iOS De-
vices Using Crowdsourcing. In Proc. of MobiSys,
2013.

[10] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bar-
tel, J. Klein, Y. Le Traon, D. Octeau, and P. Mc-
Daniel. FlowDroid: Precise Context, Flow, Field,
Object-sensitive and Lifecycle-aware Taint Analy-
sis for Android Apps. In Proc. of PLDI, 2014.

[11] R. Balebako, J. Jung, W. Lu, L. F. Cranor, and
C. Nguyen. ”Little Brothers Watching You:” Rais-
ing Awareness of Data Leaks on Smartphones. In
Proc. of SOUPS, 2013.

[12] J. Bell and G. Kaiser. Phosphor: Illuminating Dy-
namic Data Flow in Commodity JVMs. In Proc. of
OOPSLA, 2014.

[13] T. Book and D. S. Wallach. A Case of Collusion:
A Study of the Interface Between Ad Libraries and
Their Apps. In Proc. of ACM SPSM, 2013.

[14] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele,
C. Kruegel, G. Vigna, and Y. Chen. EdgeM-
iner: Automatically Detecting Implicit Control
Flow Transitions through the Android Framework.
In Proc. of NDSS, 2015.

[15] X. Chen and S. Zhu. DroidJust: Automated
Functionality-aware Privacy Leakage Analysis for
Android Applications. In Proc. of WiSec, 2015.

[16] S. Consolvo, J. Jung, B. Greenstein, P. Powledge,
G. Maganis, and D. Avrahami. The Wi-Fi Privacy
Ticker: Improving Awareness & Control of Per-
sonal Information Exposure on Wi-Fi. In Proc. of
UbiComp, 2010.

[17] J. Crussell, R. Stevens, and H. Chen. MAdFraud:
Investigating Ad Fraud in Android Applications. In
Proc. of MobiSys, pages 123–134. ACM, 2014.

[18] M. Egele, C. Kruegel, E. Kirda, and G. Vigna.
PiOS: Detecting Privacy Leaks in iOS Applica-
tions. In Proc. of NDSS, 2011.

[19] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones. In Proc. of
USENIX OSDI, 2010.

[20] C. Gibler, J. Crussell, J. Erickson, and H. Chen.
AndroidLeaks: Automatically Detecting Potential
Privacy Leaks in Android Applications on a Large
Scale. In Proc. of TRUST, 2012.

[21] P. Gill, V. Erramilli, A. Chaintreau, B. Krishna-
murthy, D. Papagiannaki, and P. Rodriguez. Fol-
low the Money: Understanding Economics of On-
line Aggregation and Advertising. In Proc. of IMC,
2013.

[22] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi.
Unsafe Exposure Analysis of Mobile In-app Adver-
tisements. In Proc. of WiSec, 2012.

[23] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The WEKA Data
Mining Software: An Update. ACM SIGKDD Ex-
plorations Newsletter, 11(1):10–18, 2009.

[24] S. Han, J. Jung, and D. Wetherall. A Study of
Third-Party Tracking by Mobile Apps in the Wild.
Technical Report UW-CSE-12-03-01, University of
Washington, 2012.

[25] S. Hao, B. Liu, S. Nath, W. G. Halfond,
and R. Govindan. PUMA: Programmable UI-
Automation for Large-Scale Dynamic Analysis of
Mobile Apps. In Proc. of MobiSys, 2014.

[26] Z. Harris. Distributional structure. Word,
10(23):146–162, 1954.

13

[27] P. Hornyack, S. Han, J. Jung, S. Schechter, and
D. Wetherall. ”These Aren’t the Droids You’re
Looking For”: Retrofitting Android to Protect Data
from Imperious Applications. In Proc. of ACM
CCS, 2011.

[28] M. Huber, M. Mulazzani, S. Schrittwieser, and
E. Weippl. Appinspect: Large-scale Evaluation of
Social Networking Apps. In Proc. of ACM COSN,
2013.

[29] J. Jeon, K. K. Micinski, and J. S. Foster. SymDroid:
Symbolic Execution for Dalvik Bytecode. Techni-
cal Report CS-TR-5022, University of Maryland,
College Park, 2012.

[30] C. Johnson, III. US Office of Manage-
ment and Budget Memorandum M-07-16.
http://www.whitehouse.gov/sites/
default/files/omb/memoranda/
fy2007/m07-16.pdf, May 2007.

[31] J. Kim, Y. Yoon, K. Yi, and J. Shin. SCANDAL:
Static Analyzer for Detecting Privacy Leaks in An-
droid Applications. In Proc. of MoST, 2012.

[32] H. King. No. 1 paid app on iTunes taken
down by developer. http://money.
cnn.com/2015/09/18/technology/
peace-ad-blocking-app-pulled/
index.html, September 2015.

[33] B. Krishnamurthy and C. Wills. Privacy Diffusion
on the Web: A Longitudinal Perspective. In Proc.
of ACM WWW, 2009.

[34] A. Le, J. Varmarken, S. Langhoff, A. Shuba,
M. Gjoka, and A. Markopoulou. AntMonitor: A
system for monitoring from mobile devices. In
Proc. of Wrokshop on Crowdsourcing and Crowd-
sharing of Big (Internet) Data, 2015.

[35] I. Leontiadis, C. Efstratiou, M. Picone, and C. Mas-
colo. Don’t kill my ads! Balancing Privacy in an
Ad-Supported Mobile Application Market. In Proc.
of ACM HotMobile, 2012.

[36] M. Lindorfer, M. Neugschwandtner, L. Weich-
selbaum, Y. Fratantonio, V. van der Veen, and
C. Platzer. Andrubis - 1,000,000 Apps Later: A
View on Current Android Malware Behaviors. In
Proc. of BADGERS, 2014.

[37] Y. Liu, H. H. Song, I. Bermudez, A. Mislove,
M. Baldi, and A. Tongaonkar. Identifying personal
information in internet traffic. In Proceedings of the
3rd ACM Conference on Online Social Networks
(COSN’15), Palo Alto, CA, November 2015.

[38] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. CHEX:
Statically Vetting Android Apps for Component Hi-
jacking Vulnerabilities. In Proc. of ACM CCS,
2012.

[39] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis,
J. Blackburn, D. R. López, K. Papagiannaki, P. Ro-
driguez Rodriguez, and P. Steenkiste. Multi-context
TLS (mcTLS): Enabling secure in-network func-
tionality in TLS. In Proc. of ACM SIGCOMM,
2015.

[40] A. Rao, A. M. Kakhki, A. Razaghpanah, A. Tang,
S. Wang, J. Sherry, P. Gill, A. Krishnamurthy,
A. Legout, A. Mislove, and D. Choffnes. Using the
Middle to Meddle with Mobile. Technical report,
Northeastern University, 2013.

[41] V. Rastogi, Z. Qu, J. McClurg, Y. Cao, Y. Chen,
W. Zhu, and W. Chen. Uranine: Real-time Privacy
Leakage Monitoring without System Modification
for Android (to appear). In Proc. of SecureComm,
2015.

[42] F. Roesner, T. Kohno, and D. Wetherall. Detecting
and Defending Against Third-Party Tracking on the
Web. Proc. of USENIX NSDI, 2012.

[43] Sandvine. Global Internet Phe-
nomena Report. https://www.
sandvine.com/downloads/general/
global-internet-phenomena/
2014/1h-2014-global-internet-
phenomena-report.pdf, 1H 2014.

[44] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy.
BlindBox: Deep packet inspection over encrypted
traffic. In Proc. of ACM SIGCOMM, 2015.

[45] Y. Song and U. Hengartner. PrivacyGuard: A VPN-
based Platform to Detect Information Leakage on
Android Devices (to appear). In Proc. of ACM
SPSM, 2015.

[46] The Wall Street Journal. What They Know
- Mobile. http://blogs.wsj.com/
wtk-mobile/, December 2010.

[47] N. Vallina-Rodriguez, J. Shah, A. Finamore,
H. Haddadi, Y. Grunenberger, K. Papagiannaki, and
J. Crowcroft. Breaking for Commercials: Charac-
terizing Mobile Advertising. In Proc. of IMC, 2012.

[48] M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu. Effec-
tive Real-time Android Application Auditing. In
IEEE Symposium on Security and Privacy, 2015.

14

[49] N. Xia, H. H. Song, Y. Liao, M. Iliofotou, A. Nucci,
Z.-L. Zhang, and A. Kuzmanovic. Mosaic: Quan-
tifying Privacy Leakage in Mobile Networks. In
Proc. of ACM SIGCOMM, 2013.

[50] L. K. Yan and H. Yin. DroidScope: Seamlessly
Reconstructing the OS and Dalvik Semantic Views
for Dynamic Android Malware Analysis. In Proc.
of USENIX Security, 2012.

[51] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and
X. S. Wang. AppIntent: Analyzing Sensitive Data
Transmission in Android for Privacy Leakage De-
tection. In Proc. of ACM CCS, 2013.

[52] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning,
X. S. Wang, and B. Zang. Vetting undesirable be-
haviors in Android apps with permission use anal-
ysis. In Proc. of ACM CCS, 2013.

[53] Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya,
B. Crispo, and F. Massacci. StaDynA: Addressing
the Problem of Dynamic Code Updates in the Se-
curity Analysis of Android Applications. In Proc.
of ACM CODASPY, 2015.

A Appendix
A.1 Observations from Manual Tests

We observed that some iOS apps implemented certifi-
cate pinning: Several apps use pinning at least for login
and registration (Facebook/Facebook Messenger, What-
sApp, Google, Gmail, Dropbox), others throughout the
app’s functionality (iTunes U, Vine, Twitter, Periscope).
Some games seem to use certificate pinning on startup
when they are downloading additional game data (Angry
Birds 2, Game of War - Fire Age, Jurassic World). Fur-
thermore, 4 apps prohibited usage over VPN (Snapchat,
Snap Upload For Snapchat, OfferUp, Google Translate).
Candy Crash Saga produced an error message about not
being able to connect to Facebook, yet still had access
to the account’s friends. Tumblr also seems to perform
some kind of certificate checking: It produced an error
message about not being able to complete the registra-
tion, but the account was still created. Finally, the regis-
tration and login for both Netflix and Ibotta did not work
with and even without intercepting the traffic.

A.2 IRB details

We are using ReCon for an IRB-approved study (#13-08-
04) that reports data from capturing all of a subject’s In-
ternet traffic, which raises significant privacy concerns.
The study protocol entails informed consent from sub-
jects who are interviewed, where the risks and benefits
of our study are explained. The incentive to use ReCon

Response Count

I spent more time reviewing claims made by appli-
cations regarding access to my data, like contacts,
location and so on.

6

I stopped using certain applications because Med-
dle shows they leak too much personally identifi-
able information.

11

I learned to keep location service off unless
needed.

4

I used Meddle to block information that I do not
want leaked.

2

No change. 3

Table 6: User survey results for the question of whether in-
formation revealed by ReCon changed participant habits.
Most users took action to address privacy as a result of informa-
tion provided by ReCon. Some users chose multiple options.

is Amazon.com gift certificates. To protect the data col-
lected, we use public key cryptography to encrypt the
captured data before it is stored on disk. Further, sub-
jects can delete their data and disable monitoring at any
time. Per the terms of our IRB, we cannot make this data
public due to privacy concerns.

In our second deployment model, we have IRB ap-
proval (#13-11-17) for a follow-up study where we
record only the first few bytes of the HTTP payload, re-
ducing the risk of recording sensitive information. We
conduct informed consent using an online form, allow-
ing us to enroll users worldwide. The incentive to use our
system is increased privacy; in return, we collect limited
information that allows us to validate the effectiveness of
ReCon and improve its accuracy with user feedback.

A.3 Full survey results

Table 6 presents the full set of questions and responses
from our user study about the effectiveness of ReCon.

A.4 Privacy and Incentives

Beyond the context of the user study, we will provide
incentives and deployment models that balance privacy
and utility for ReCon. First, we will make our software
source code publicly available to build trust from users,
Second, we will provide easy-to-use hardware and soft-
ware that allows users to run the ReCon system on their
own devices inside their own network. This substantially
reduces the privacy risk because user traffic never tra-
verses an untrusted machine, and it opens up exciting re-
search opportunities, such as bumping SSL connections
to identify and block PII in HTTPS flows.

An interesting challenge is how to incorporate a
crowdsourced classifier in this deployment model. We
believe that we can retrain each user’s classifier locally
based on feedback, then exchange the models themselves
with other users. Because the models should not contain

15

any PII (rather, they store the features associated with
PII), the privacy risk should be minimal. However, it is
an open question whether we can ensure that PII does not
leak via side channels.

A.5 Alternative Architectures for PII Sharing

In the current implementation, ReCon relies on being
able to identify PII in plaintext flows. Naturally, if users
begin to block or change their PII using ReCon, trackers
and advertisers may resort to obfuscation and encryp-
tion to avoid detection. In response, we can simply re-

train ReCon to identify obfuscated PII leaks, using avail-
able static and dynamic analysis tools that are resilient
to these evasion techniques. Of course, this could lead
to an endless cat-and-mouse game of PII detection eva-
sion. We hope to avoid this using ReCon to promote
explicit PII sharing, where users and third parties engage
in an incentive-driven, mutually beneficial service. In the
case that third parties choose not to participate in such a
scheme, we can provide strong incentives by blocking all
traffic to those sites unless they cooperate.

16

