This is a textbook for a course in multivariable calculus. It has been used for the past few years here at Georgia Tech. The notes are available as Adobe Acrobat documents. If you do not have an Adobe Acrobat Reader, you may down-load a copy, free of charge, from Adobe.
Chapter One - Euclidean Three Space
   1.1 Introduction
   1.2 Coordinates in Three-Space
   1.3 Some Geometry
   1.4 Some More Geometry--Level Sets
Chapter Two - Vectors--Algebra and Geometry
   2.1 Vectors
   2.2 Scalar Product
   2.3 Vector Product
Chapter Three - Vector Functions
   3.1 Relations and Functions
   3.2 Vector Functions
   3.3 Limits and Continuity
Chapter Four - Derivatives
    4.1 Derivatives
   4.2 Geometry of Space Curves--Curvature
   4.3 Geometry of Space Curves--Torsion
   4.4 Motion
Chapter Six - Linear Functions and Matrices
   6.1 Matrices
   6.2 Matrix Algebra
Chapter Seven - Continuity, Derivatives, and All That
   7.1 Limits and Continuity
   7.2 Derivatives
   7.3 The Chain Rule
Chapter Eight - f:Rn- R
   8.1 Introduction
   8.2 The Directional Derivative
   8.3 Surface Normals
   8.4 Maxima and Minima
   8.5 Least Squares
   8.6 More Maxima and Minima
   8.7 Even More Maxima and Minima
Chapter Nine - The Taylor Polynomial
   9.1 Introduction
   9.2 The Taylor Polynomial
   9.3 Error
  Supplementary material for Taylor polynomial in several variables.
Chapter Ten - Sequences, Series, and All That
   10.1 Introduction
   10.2 Sequences
   10.3 Series
   10.4 More Series
   10.5 Even More Series
   10.6 A Final Remark
Chapter Eleven - Taylor Series
   11.1 Power Series
   11.2 Limit of a Power Series
   11.3 Taylor Series
Chapter Twelve - Integration
   12.1 Introduction
   12.2 Two Dimensions
Chapter Thirteen - More Integration
   13.1 Some Applications
   13.2 Polar Coordinates
   13.3 Three Dimensions
Chapter Fourteen - One Dimension Again
   14.1 Scalar Line Integrals
   14.2 Vector Line Integrals
   14.3 Path Independence
Chapter Fifteen - Surfaces Revisited
   15.1 Vector Description of Surfaces
   15.2 Integration
Chapter Sixteen - Integrating Vector Functions
   16.1 Introduction
   16.2 Flux
Chapter Seventeen - Gauss and Green
   17.1 Gauss's Theorem
   17.2 Green's Theorem
   17.3 A Pleasing Application
Chapter Eighteen - Stokes
   18.1 Stokes's Theorem
   18.2 Path Independence Revisited
Chapter Ninteen - Some Physics
   19.1 Fluid Mechanics
   19.2 Electrostatics