Efficient Monitoring Algorithm for Fast News Alert

Ka Cheung Sia Junghoo Cho
{kcsia,chg @cs.ucla.edu
UCLA Computer Science Department
Los Angeles, CA 90095

Abstract

Recently, there has been a dramatic increase in the
use of XML data to deliver information over the Web.
Personal weblogs, news Web sites, and discussion fo-
rums are now publishing RSS feeds for their subscribers
to retrieve new postings. While the subscribers rely on
news feeders to regularly pull articles from the Web sites,
the aggregated effect by all news feeders puts an enor-
mous load on many sites. In this paper, we propose a Data Sources Subseribers
blog aggregator approach where a central aggregator
monitors and retrieves new postings from different data
sources and subsequently disseminates them to the su
scribers to alleviate such a problem.

We study how the blog aggregator should monitor the gjies had to shut down their RSS feeds completely due to
data sources to quickly retrieve new postings using min- the increased traffic that they could not handle [21, 22].
imal resources and to provide its subscribers with fast g surge in the traffic may be handled simply by in-
news alert. Our studies on a collection of 10K RSS feedscreasing the bandwidth for a small number of sites op-
§how that, with proper resource allocation and schedul- 4 4teq by big organizations. However, for the majority
ing, the blog aggregator provides news 50% faster than ¢ gjies that are operated by individuals or small organi-
the best existing approach and also reduces the load onzigns; this solution is unrealistic because they do not
the monitored data sources by a significantamount. 46 technical expertise or financial resources to man-

age a large-scale Web site. In fact, the growing popular-
1. Introduction ity of personal weblogs (often called blogs) is due to the

R . th has b q . in th fact thatindividualscould have posted many interesting
ecently, there has neen a ram_at|c Increase In the, icjes even before traditional media caught on to the
use of XML data to deliver information over the Web.

| oul | webl Web si q news. These personal sites, by their nature, are not de-
n particular, personal weblogs, news Web Sites, and qiqheq 1o handle a large volume of traffic and often fail
discussion forums are now delivering up-to-date post-

,) , : when the traffic exceeds a certain level.

ings to their subscribers using the RSS protocol [20].

In essence, RSS ispill-based protocol, where individ- 1.1. Blog aggregator

ual subscribers have to regularly contact Web sitestore- ag 5 potential solution to this problem, we propose

trieve new postings, using programs suchaws feed- 54 study araggregator approactshown in Figure 1,

ers _ where a central aggregator collects new postings from
As the popularity of the RSS feeds and news feed- the original RSS feeds and users retrieve new postings

ers grows, however, they have started to put an enor-ingirectly from the central aggregator. This approach has

mous load on many sites, endangering the future of RSS-3 nymper of advantages over the existing architecture:
based services [23, 24]. That is, since each news feeder

contacts every subscribed Web site constantly — often 1. Offloading traffic from the sitesThe underlying
more than once every hour — many sites have experi- sites are shielded from the direct user traffic and
enced enormously high loads. In several instances, some do not suffer from increased popularity or “Slash-

Figure 1. Framework of an information ag-
b gregator.

dot effects” [27]. Only the aggregator has to scale
as more users subscribe. Upgrading a single aggre-
gator will clearly be easier and more manageable
than upgrading hundreds of thousands of sites man-
aged by independent individuals. Having delegated
scalability issues to the aggregator, the individual
sites can focus on generating high-quality content.

2. Collecting important user statisticdt is possible

to collect statistics on how users access and use
the RSS feeds, which can be used to improve the
overall experience of RSS feed users. For example,
the aggregator may monitor the popularity of indi-
vidual blogs and the set of users who subscribe to
them, and use this information to recommend users
with a few “suggestions” for the “hot” RSS feeds
that may be interesting to users.

inhomogeneous Poisson process to model the gen-
eration of postings at the RSS feeds.

e In Section 3, we investigate the optimal ways to re-
trieve new postings from individual RSS feeds.

e In Section 4, we examine the general characteristics
of the RSS feeds available on the Web using data
collected over three months from 10K RSS feeds.
We also evaluate the effectiveness of our retrieval
policies using the experimental data. Our experi-
ments show that our policy significantly reduces the
retrieval delay compared to the best existing poli-
cies.

Framework

The primary goal of this paper is to develop mech-

anisms that allow users to access new postings quickly

1.2. Challenges and contributions

from RSS feeds without overloading the Web sites. Po-

While clearly beneficial, one important challenge for tentially, there exist two ways to approach this problem:

an aggregator is being able to quickly retrieve new post-
ings from the sites to minimize the delay from the publi-
cation of a posting at the site to its appearance at the ag-
gregator; otherwise, users would rather go directly to the
original sites to obtain the most recent postings. In this
paper, we study how we can minimize this delay with-
out incurring excessive overload to the sites.

The problem of delay minimization is similar to
the traditional Web-crawling problem in the literature,
where Web crawlers have to maintain an up-to-date lo-
cal copy of remote Web pages. However, there are
two main differences that distinguish the current prob-
lem from the crawling problem: (1) Our goal is to re-
trieve new postings early while the goal of a Web
crawler is to maintainexisting copies of Web pages
“fresh”. This difference makes the overall optimiza-
tion goal distinct, leading to a significantly different
retrieval policy. (2) The expected retrieval inter-
vals are significantly different between the two systems;
For traditional Web crawlers, it is acceptable to in-

1. Extend the RSS protocdlhe current RSS protocol
does not provide an efficient mechanism for a sub-
scriber to retrieve only new postings since her last
retrieval. By extending the protocol to make this
possible (e.g.,;Return everything since 2:00PM
May 10th, 2005}, we may significantly reduce re-
dundant downloads Even further, we may adopt
a newpush-basegrotocol, where the sources ac-
tively notify the subscribers of new postings, so that
we can entirely avoid the periodic checking of the
Web sites by subscribers.

2. Build a new layer of servicéJsing the existing pro-
tocol, we may build a new layer of service that can
alleviate the problem. As we described in the intro-
duction, for example, we may build an RSS-feed
aggregator that collects new postings from Web
sites and lets users access them centrally.

As it is for any changes to a widely adopted standard,

dex a new Web page within, say, a month of its creation, changing the existing RSS protocol is practically very
but for many applications based on the RSS proto- difficult, especially because under the push-based pro-
col (such as personal weblogs or newsfeeds), it is im- tocol, the Web sites have to take the additional respon-
perative to retrieve new postings within hours, if not Sibility of keeping track of the last visit time of their
minutes, of its publication. As we will see later, this dif- subscribers and the items the users are subscribed to. In
ference fundamentally changes how we should modelthe rest of this paper, therefore, we primarily focus on

the generation of new postings and provides new oppor-t_he aggregator apprpach. Later in the experim_ent sec-
tunities for improvement. tion, however, we will also measure the potential sav-

In this paper, we investigate the potential of our pro- Ings from the described changes of the RSS protocol to

posed aggregator approach for RSS feeds. In particularS€€ Whether the changes are worth the effort.
we make the following contributions in this paper:

1 Forthe general HTTP protocol, a similar extension has begn p
posed to help Web caches, but it is not being widely used due to
limited browser supports.

e In Section 2, we describe a formal framework to
this problem. In particular, we propose a periodic

2.1. Architecture and terminology fore. This increase in delay is because two new post-
ings,t; andt,, are pending at the source until they are

As shown in Figure 1, we consider a distributed in- X
retrieved by the aggregator.

formation system that consists efdata sourcesa sin-

gle aggregatorand a number ofubscribers The data
sources constantly generate new pieces of information
referred to as neyostings The aggregator periodically
collects the most recektpostings from each souréed
subscriber, in turn, retrieves the new postings from the
aggregator.

Delay

Time
3

-~
)

Freshness

Resource constraint¥Ve assume that both the aggrega-
tor and the sources have limited computational and net-
work resources for the retrieval of new postings. For ex-
ample, the aggregator may have a dedicated T1 line that
allows the aggregator to contact the sources up to one
million times per day. In this paper, we model the re-
source constraint by assuming that the aggregator can
contact the sources a total 8f times in each period.
(The notion of “period” will become clear when we dis-
cuss the posting generation model.) Note that under this
model, each retrieval is assumed to use the same amount \when multiple sources generate new postings, it may
of resources. Itis straightforward to extend our model to he more important to minimize the delay from one
the variable cost case. source than others. For example, if a source has more
Retrieval delayThe primary goal of the aggregator is to subscribers than others, it may be more beneficial to
minimize the delay between the appearance of a post-minimize the delay for this source. This difference in
ing at the source and its retrieval by the aggregator. Theimportance is captured in the following weighted defini-

Time

Age

Time
ity 11 () B3

— — — posting is generated
data source is retrieved

Figure 2. lllustration of the delay, fresh-
ness, and age metrics

notion of retrieval delay can be formalized as follows.

DEFINITION 1 Consider a data sourégthat generates
postings at times,, ..., tx. We also use; to represent
the posting itself generated at tinig unless it causes
confusion. The aggregator retrieves new postings from
O at timesty,...,7,. The delay associated with the
postingt; is defined as

D(t;)

Tj—ti

wherer; is the minimum value with; < 7;. The total
delay of the postings from sourceis defined as

k k

> D(ti) =) (7 —ti) with t; € [rj_1,7;].

O

D(0)

For illustration, we show an example evolution of the
delay in Figure 2(a). (Ignore other subfigures in Fig-

ure 2 for now.) The data source generates five postings

atty,...,t5 (marked by dashed lines). Two retrievals
are scheduled by the aggregatorratand = (marked

by solid lines). The figure shows the delay associated
with the data source over time. Note that after the gen-
eration ofty, the delay increases twice as rapidly as be-

2 kistypically in the range of 10-15

tion:

DEFINITION 2 We assume each sour@gis associated
with weightw;. Then the total weighted delay observed
by the aggregatoi)(A), is defined as

D(A) =) w; D(0y)
i=1

Delay minimization problenGiven the definitions, we
can formalize the problem of delay minimization as fol-
lows. The notation;; is used for thgth posting genera-
tion time atO; andr;; for the jth retrieval time from0;

by the aggregator.

PrRoOBLEM 1 Given the posting generation timeg’s,
find the retrieval times;;'s that minimize the total de-
lay D(A) = >, w; D(O;) under the constraint that

the aggregator can schedule a total\dfretrievals. g

2.2. Posting generation model

Note that in practice, the aggregator does not know
the future posting generation timeg’s. Therefore, to
solve the delay minimization problem, the aggregator
has tolearn the general posting pattern of each source
based on its past history amiessthe future posting
times from the pattern.

In the context of Web crawlers, researchers have pro-
posed that &lomogeneou®oisson process with a rate

where the posting rat® changes over time. Depending

u» Weekly rumber of potings (S¢p 26 - Jan) 2 hours posing count (0613 - 00t 8) on whether similar patterns of(¢) values are repeated

i i ? i e e dves e 4R e over time, this model can be further classified into one
Pl of the following:

S 3 5 P B 1. Periodic inhomogeneous Poisson modéle as-
sume that the samg(¢) values are repeated over
time with a period ofT". Thatis,\(t) = A\(t — nT)
forn = 1,2,.... This model may be a good ap-
proximation when similar rate patterns are repeated
over time, such as the burst of activities during the

day followed by a period of inactivity at night.

3 : : H

€og 1 Oct 1 Nov i Dec
T ! { ! £ 1500
0.4] H H H H Z 1000

02y i v i 500

120 140 160

10 12 14 16 0 20 40 60 80 100
Hours (since Oct 3 12:00 am)

8
Week

(@) homogeneous Poisson (b) periodic inhomoge-

model neous Poisson model
Figure 3. Posting rate at different resolu- 2. Non-periodic inhomogeneous Poisson modaiis
tion. is the most generic model where no assumption is

made about the periodicity in the changes\¢f).

That is, there exists rf that satisfies\(t) = A\(t—
A is a good model to be used in this context [4, 6]. nT).

Roughly, a homogeneous Poisson process is a stateless S)

and time-independent random process where events oc- CVen the periodicity that we observe in the RSS
cur with the same probability (or rate) at every time ~ POSting pattern, we mainly use the periodic inhomoge-
point [28]. In our context, we may apply this model by N€0US Poisson model in the rest of this paper.
assuming that a data sour€g generates a new post- 2.3. Comparison with previous crawler re-
ing at the same ratg; at every time instance. That is, search

A(t) = A; atanyt for O;. _ _ _ We briefly compare our delay metric to other met-
Researchers have shown that this model is appropri-jicq in the literature used for Web crawlers [4, 7, 6, 5,

ate especially when the time grgnularity is longer than 8, 16, 19]. For Web-crawler optimization, some com-
one month [4, 6]. For example., Figure 3(a) shows the to- monly used metrics arfeeshnesandage[4, 7]. Fresh-

tal number of postings appearing in roughly 10,000 RSS ye54s 4 zero-one metric indicating whether a local copy
feeds that we monitored (more details of this dataset ¢ 5 page is same as the one in the original Web sites.

is described in our experiment section). The horizontal Ageis a monotonic increasing metric indicating the time

axis is the time, and the vertical axis shows the number g|3hsed since the first modification that is not reflected in
of postings appearing in each week of the monitoring pe- e |ocal copy. The main difference between these met-
riod. While there are small fluctuations, the total number rics and our delay metric is that other metrics are mainly

of postings is reasonably stable at roughly 180,000 post-4ncerned about changesegistingWeb pages, while

ings per week, which matches with the homogeneous o, gelay metric is about the retrieval péw postings.
Poisson assumption. Based on this homogeneous mOdelAssuming that the publication of a new posting corre-
rgsearchers have derived the optimal re-download a|9°‘sponds to a change to an existing Web page, Figure 2(a),
rithms for Web crawlers [6, 8]'_ o (b), and (c) show the time evolution of delay, freshness,
Unfortunately, when the time granularity is much 4n4 age metrics, respectively. Note that our delay met-
shorter than one month, there exists strong evidence thatic increases more rapidly as new postings are published,

the homogeneous Poisson model is no longer valid [2, \yhjle the age metric increased just linearly as time goes
14]. In Figure 3(b), for example, we show the total num- o This difference, combined with the fundamental dif-
ber of postings appearing in the same RSS feeds whenerence in our posting generation model, allows signifi-
we count the number at a granularity of two hours. From 4+ improvement as we will see later.

the figure, it is clear that at this time granularity, the More recent metrics, such as the quality met-
time-independence property of the homogeneous Pois+jc in [19], try to model the freshnesserceived by
son model does not hold. The posting rate goes throughthe ysersto improve the effectiveness of search re-
wide fluctuation depending on the time of the day and gjts. These metrics, however, are not directly applica-
the day of the week. The graph also shows a certainp|e to our context because they are specifically opti-
level of periodicity in the posting rates. During the day, mized for the Web-search context.

there are a significantly higher number of postings than .

at night. Similarly, there are more activities during the 2.4. Expected retrieval delay

weekdays than on weekends. Based on this observation, Since the aggregator does not know the exact times
we propose to use aimhomogeneou®oisson model, at which new postings are generated, it can only esti-

mate theexpectedielay based on the posting generation 3.1. Resource-allocation policy

model of a source. In general, the expected delay canbe o a5k in this section is to allocate thé retrievals
computed as follows under the general inhomogeneous

Poisson model:

LEMMA 1 For a data sourceD with the rateA(¢), the
total expected delay for the postings generated within
[1;-1,7;] are as follows:

/ 7O — Dyt

PrROOF During a small time intervadt at timet, A\(¢)dt

among the data sources to minimize the total expected
delay. For this task, we use the simple homogeneous
Poisson process model because the resource allocation
is done based on tlaverage posting generation radsmd
theweight of each sourgéoth of which are adequately
captured by the homogeneous Poisson model. The more
complex inhomogeneous model will be used later when
we consider the retrieval-scheduling problem.

THEOREM 1 Consider data source8;, ..., O,,, where
O, has the posting rate\; and the importance weight

postings are generated. Since these postings are rew;. The aggregator performs a total 8f retrievals per

trieved at timer;, their associated delays are — ¢.

Therefore, the total delay of the postings generated be-

tweenr;_; andr; is [77 A(t)(r; — t)dt. n

each periodr.

Under this scenario, the weighted total delay of post-
ings,D(A) =7, w;D(0;), becomes minimum when
the source); is contacted at a frequency proportional to

For the simpler homogeneous Poisson model, the vVwiA;. Thatis,m;, the optimal number of retrievals per

above formula is simplified to the following formula.

COROLLARY 1 When the posting rate remains constant
at A within the time periodr;_1, 7;], the total expected
delay for postings generated within this period is
My = 75-1)°
5 .

3. Retrieval policy

We now study how the aggregator should schedule 5.4 the total weighted dela2(A), is

the M retrieval pointsr;;’s to minimize the total ex-

pected delay. We approach this scheduling problem in

two steps:

e Resource allocationGiven n data sources and a
total of M retrievals per period’, the aggregator
first decidesrow many timeg will contact individ-
ual source);. This decision should be made based

on how quickly new postings appear in each source

and how important each source is.

Retrieval schedulingAfter the aggregator decides
how many times it will contacOD; per T, it de-
cides exactlyat what timest will contact O;. For

example, if the aggregator has decided to contact

O twice a day, it may either schedule the two re-

trieval points at uniform intervals (say, once at mid-

night and once at noon) or it may schedule both re-
trievals during the day when there are likely to be

more new postings.

In Section 3.1, we first study the resource alloca-
tion problem. In Section 3.2, we then investigate the
retrieval-scheduling problem.

each period folO,, is given by

m; = kyv/wiki 1)

where k is the proportionality constant satisfying
Z:‘L:I]{3\/ wz)\z =M.
ProOF We consider the data sour€k that is retrieved

m; times per day. Under the homogeneous Poisson
model, we can show thd®(0;), the total delay of post-
ings fromQ;, is minimum when the retrievals are sched-
uled at the uniform intervalIn this caseD(0;) = 2L

2m; !

(]

D(A) can be minimized by using the Le’grange multi-
plier method.

om;; 2m? H-

If we rearrange the above equation, we get

3.2. Retrieval scheduling

We have just discussed how to allocate resources to
data sources based on their weights and average post-
ing rates. Assuming that postings are retriewedimes
from the sourc®), we now discuss exactly at what times
we should schedule the retrievals. Clearly, this deci-
sion should be based on what time of the day the source

3 This proof follows from a special case of the Cauchy’s iradify
stating that sum of squares are always less then square of sums
and equality holds when all numbers are equal.

is expected to generate the largest number of postings, s6
we now use the periodic inhomogeneous Poisson model

to capture the daily fluctuation in the posting generation
rate.

We start our discussion with the simple case when
only one retrieval is allocated per period in Section 3.2.1.

We then extend our analysis to more general cases in

Section 3.2.2.

3.2.1. Single retrieval per period Consider a data
sourceO at the periodic posting ratg(t) = A(t — nT).

The postings fron® are retrieved only once in each pe-
riod T'. The following theorem shows that the best re-
trieval time is when the instantaneous posting rate
A(t) equals the average posting rate over the pe-
riod T

THEOREM 2 A single retrieval is scheduled at time
for a data source with the posting ratgt) of period
T. Then, when the total delay from the source is mini-

mized,r satisfies the following condition:
1 T
AF) = = / M)t (and <0). :
T 0

dA(T)
dr

ProoOF Without loss of generality, we consider only the

postings generated within a single interj¢al7’]. We use

the notationD(7) to represent the delay when the re-

trieval is scheduled at. The postings generated between

[0, 7] are retrieved at, so their delay is[; A(t)(T —

t)dt. The postings generated betwéeyi] are retrieved

in the next interval at tim&l’ + =, so their delay is

fTT At)(T + 7 — t)dt. Therefore,

D(7)

T T
/)\(t)(Tft)dtJr/ NO(T + 7 — t)dt
0 T T T
_7 / At)dt + / N0 (7 —).
T 0

D(r) is minimum when

dD(T)
dr

0

~T A1) + /OT A()dt

d>D(r) dX(T)
2

and——~ = -T =~ > 0.
After rearranging the equations, we get

A(r) = %/OT M)t <and dNT) 0).

—
We illustrate the implication of the theorem using a
simple example.

ExAmMPLE 1 Figure 4 shows a data source that goes
through a period of high activityh(¢) = 1, during

t € [0,1] and a period of low activityA(t) = 0, dur-
ing t € [1,2]. The same pattern is repeated after 2.

Its postings are retrieved once in each period.

[

o o
o ©

o

Posting rate A(t)
N

o
N}

0 15 2

1
time (t)
Figure 4. A data source going through pe-
riods of high activity and low activity

According to our theorem, the retrieval should be
scheduled at = 1 when the\(¢) changes froml to
0 and takes the average valiét) = 0.5. This result
matches our intuition that the retrieval should be sched-
uled right after a period of high activity. The expected
total delay in this case i;. Compared to the worst case
when the retrieval is scheduled right before a period of
high activity (i.e.,r = 0, which makes the dela%), we

get a factor of 3 improvement. O

3.2.2. Multiple retrievals per period Now, we gener-
alize the scenario and consider the case when multiple
retrievals are scheduled within one period.

THEOREM3 We schedule m retrievals at time
T1,...,Tm fOr a data source with the posting rate
A(t) and periodicityT. When the total delay is mini-
mized, ther;’s satisfy the following equation:

7

M) (rjn —15) = / Adt, (@)

Tj—1
wherer,, 1 = T+ (the first retrieval point in the next
interval) andr, = 7,,, — T (the last retrieval point in the

previous interval). o

PrROOF Without loss of generality, we consider the ex-
pected total delay in postings generated betwegesnd
T+ T1.

NE

D(0)

=Y [A0 -

(3

Tit1 T+m
<Ti+1 / A(t)dt) - /
T et

1 2

<n+1/:+l /\(t)dt> —/OT A(t)tdt.

ThenD(O) is minimum wheng—g for everyr;:

=

<.

M

A(t)tdt

3

I

=1

oD

— = /)\(t)dt + Tj)\(Tj) — Tj-‘rl)\(Tj) =0.
87']' i1

G-

o1 [5 A®dt
-1

AR

AT |

0 0.2 0.4 0.8

time - t

0.6 1

m}
Figure 5. The optimal schedule for 6 re-

trievals per period for data source with
posting rate A(t) = 2 + 2sin(2xt).

By rearranging the equation, we get

A=) = [A
We illustrate the graphical meaning of the theorem
using an example.

ExAMPLE 2 Figure 5 shows a data source with the
posting rate\(t) = 2+2sin(27t). Postings are retrieved
from the sourcen times in one period. We assume that
we have decided up to th@" retrieval point, and need
to determine thgj + 1) point. Note that the right-
hand side of Equation 2 corresponds to the dark-shade
area in Figure 5. The left-hand side of the equation cor-

responds to the light-shaded area of Figure 5. The theo-

rem states that the total delay is minimized whep, is
selected such that the two areas are the same.

The above example suggests two methods for com-
puting the optimal retrieval points.

1. Exhaustive search with prunin@nce the first two
retrieval points are determined, the remaining re-
trieval points are derived automatically from Equa-
tion 2. Therefore, all possible plans are evaluated
by exhaustively trying all choices for the first two
retrieval points (assuming a certain level of dis-
cretization in the time). We can then choose the
plan with the minimum delay.

. Iterative refinementnitially, we place the retrieval
points at uniform intervals. We then iteratively ad-
just the retrieval points by comparing the areas be-
low the graph. For example, if the dark area in
Figure 5 is larger than the light area, we maye
slightly to the left to compensate for it. (More pre-
cise formulations on how much we need to shift the

e

retrieval points are given in the extended version of
this paper [26].)

In our experiments, we find that both methods lead to
reasonable performance in finding the optimal retrieval
points when a time granularity of 30 minutes is used.

4. Experiments

In this section, we evaluate the performance of our
retrieval policies based on real data collected from RSS
feeds.

4.1. Description of dataset

RSS feeds are essentially XML documents published
by Web sites, news agents, or bloggers to ease syndi-
cation of their Web site’s contents to subscribers. Fig-
ure 6 shows a typical RSS feed. It contains differ-
ent postings in thelitem) tag and summaries in the
(description) tag. Each posting is associated with a
timestamp(dc:date), stating when it was generated. The
postings are arranged in the reverse chronological or-
der where new postings are prepended in the front and
old postings are pushed downwards and removed. For
the majority of current implementations, an RSS feed
contains the most recent 10 or 15 postings. Consistent
with the architecture mentioned above, new postings are
added to the feed at any time without notifying the sub-
scribers; thus, the subscribers have to poll the RSS feeds
regularly and check for updates. We have started archiv-
ing a list of 12K RSS feeds collected from the Web
since September 2004 by downloading them 4 times a
ay. Out of the 12K feeds, 9,634 (about 80%) have at
ast one posting within the three-month period between
September 2004 and December 2004. We focus on this
subset of 9,634 RSS feeds in the following experiments.

- <rdf:RDF>
<channel rdf:about="http://slashdot.org/'/>
- <image rdf:about="http://images.slashdot. org/topics/topicslashdot.gif" >
<title>Slashdot</title>
- <url>
http://images. slashdot. org/topics/topicslashdot. gif
<hurl>
<link>http://slashdot.org/</link>
</image>
- <item rdf:about="http://slashdot.org/article. pl?sid=05/06/21/2238256& from=rss">
<title>L egal Music Downloads At 35%, Soon To Pass Piracy</title>
- <link>
http://slashdot.org/article. pl?sid=05/06/21/2238256& from=rss
<Alink>
- <description>
bonch writes "E ntertainment M edia R esearch released a study stating that 35% of music listeners ar
strategic milestone with the population of legal downloaders close to exceeding that of pirates,” said
</description>
<dc: creator>timothy</dc: creator>
<dc:date>2005-06-22T 02:00:00+00:00</dc: date>
<dc:subject>music</dc: subject>
<slash: department>cars-surpass-buggies</slash: department>
<slash: section>mainpage</slash: section>
<slash: hitparade>39,39,27,17,1,0,0</slash: hitparade>
<slash: comments>39</slash: comments>
<fitem>

Figure 6. A sample RSS feed

In Figure 7 we show the distribution of posting rates
among the 9,634 RSS feeds, with the x-axis being the

number of postings generated within three months and
the y-axis being the number of feeds at the given rate.
Both axes are shown in log scale. Within the 3 months,
3,116 feeds have generated one or more postings per da
on average. The distribution roughly follows a straight
line in the log-log scale plot, which suggests that it fol-
lows a power-law distributiofi.

10

X 9634 feeds

Number of RSS feeds

0
10°55

10 *

10 °

10° 10° 10

Number of postings
Figure 7. Distribution of posting rate of
9,634 RSS feeds

10

4.2. Learning posting rates
In order to implement our resource allocation policy,

the aggregator has to estimate the average posting rate

A; of each source. Intuitively, the posting rate can be es-
timated by observing how many postings are generated
by a source within a particular period of time. We refer
to this period of estimation as tlestimation window
Clearly, there exists a tradeoff in choosing the size of
the estimation window; if the window is very small, the

300
280F
2601

‘ -©- Resource allocation only: 4 retrievals per day \

y 2401
2201
200F
180F
1601

1401

Average delay (minutes)

1201

100

80
0

10 20 30 a0

Size of estimation window (days)
Figure 8. The effect of estimation window
width.

50

window gets longer, the average delay decreases. We be-
lieve this improvement is due to the increased accuracy
of the estimated posting rate. Beyond the window size
of 14 days, however, we do not observe any improve-
ment, which suggests that we achieve a reasonably accu-
rate estimation of the rate from the 14-day data. The fact
that delay does not increase after 14-day window sug-
gests that the posting rate of a source does not change
significantly over time.

To further investigate changes in the posting rate, we
plot the following two graphs:

e We calculate the posting rate of each source using
the first 14-day trace and use it as the x-coordinate.
We then calculate the posting rate again based on
the succeeding 14-day trace and use it as the y-
coordinate. Based on the two coordinates, we draw
a x-y scatter plot. If the posting rate remains the
same between the two 14-day intervals, all dots
should be aligned along the line = x. Figure 9
(a) shows the graph.

estimated rate may be inaccurate due to the randomness ¢ We select the first and the last 14-day traces and

in the posting generation, but if the window is very large
and if the posting rate itself changes over time, the esti-
mated rate from the past history may be different from
the current posting rate.

To explore this tradeoff and learn the optimal estima-
tion window length, we run the following experiment:
At the beginning of each day, we use the gasiay his-

tory data to estimate the posting rate of each source and

decide the optimal number of retrievals per day for each
source. We repeat this process over the entire 3-month
data and measure the average delay at the end of the
month period.

Figure 8 shows the average delay of postings for dif-
ferentk values® The graph shows that as the estimation

draw a similar x-y scatter plot (Figure 9 (b)). This
graph shows the stability of posting rates during the
3-month period of our experimental data.

In the figures, we use different colors for the dots de-

pending on their proximity to the diagonal line.

e Group A (dark red)the top 50% dots closest to the diag-
onal,

e Group B (light yellow) the top 50%—90% dots closest to
the diagonal, and

e Group C (green)the rest

3"rhe two graphs in Figure 9 show that most of the dots
are very close to the ling = x; more than 90% of
the dots are tightly clustered in a narrow band around

4 Acurvefit of the data indicates the best matching power-lawe
isy = ax®, with a ~ 376 andb ~ —0.78.

5 The graph is obtained when postings are retrieved 4 timedagyer

per source on average. The results were similar when we use dif
ferent numbers of retrievals per day.

Similar to the estimation of average posting rate,
s T - there may exist similar tradeoffs in deciding how much
- ek - data to overlap; a small value may lead to inaccuracy,
BN o while a largek value may not reflect changes in post-

; : ing patterns. Again, to address this issue, we use differ-

Group C
Group B
= Group A

2 >

-
15| f’
o

entk values to obtain the cumulative graph, apply our re-

Posting rate on week 3-4 (Oct 17-30)
Posting rate on week 12-13 (Dec 12-25)

ok o pde trieval scheduling policy, and measure the average delay
/ 1 at the end of our experiments. The result of this exper-
Posting rate on week 1-2 (Oct 3-16) Posting rate on week 1-2 (Oct 3-16) |ment |S Shown In Flgure 11 The graph ShOWS that the

size ofk does not impact the final delay too much; The

(a) two consecutive periods (b) periods separated by 2 delay does not Change significantly for=1,2,...,4.

' . months _ Given this result and the result from the posting rate es-
Figure 9. Correlation between posting rate timation, we conjecture that past 14-day history data is a
measured at different time. good choice in learning both the posting rate and the pat-

tern of each source.

y = x. This result indicates that the posting rates of
most sources are stable, at least within the 3-month pe-
riod of our data. .

4.3. Learning the posting patterns

In order to implement our resource scheduling pol-
icy, the aggregator has to learn the posting pattern of
each source (more precisely, the shape @ of each
source). In Section 2.2, we showed that similar po_stmg SOW
patterns are repeated every day as a result of daily pe- 85
riodicity of people’s activity. Given this, we usg =
1 day as the period of the posting pattérn.

Again, the posting pattern of a source should be
learned based on its past history. To learn the pattern, we
overlap the hourly posting counts everyday feweek
data of each source and obtain a cumulative hourly-
posting graph similar to the one shown in Figure 10. We
then use this cumulative count graph as ite) of the

Average delay (minutes)
N
S
3

1 15 2 2.5 3 35 4 45
Length of past history used (weeks)

Figure 11. Effect of different learning pe-
riod of posting patterns.

4.3.1. Posting pattern clustersFrom our investiga-
tion, we also find that a large number of sources have
very similar posting patterns. To exploit this similarity,

source. we decide to group the sources into a small number of
clusters of similar posting patterns and find the optimal
5 210" ‘ ‘ ‘ ‘ retrieval scheduling based on the cluster that a source be-
2] longs to.
18] 7\ R] K-means method is used to cluster the posting pat-
o 161 R % N %] terns. First, the first 2-week data are used to construct in-
§ 4] dividual posting pattern of every feed as we did for Fig-
gl'i ure 10. Each feed is then represented by a 24-dimension
£ s vector, where each dimension represents the percentage
206 of daily postings generated within that particular hour.
0.4 The K-means clustering algorithm is applied on this
02 dataset and cluster centroids are used as the represen-
%% 5 10 15 20 tative pattern of the cluster. We test on differéntval-
. our ues and find thak” = 12 is a good choice because most
Figure 10. Aggregated posting pattern of .
of the patterns found beyond 12 clusters tend to be sim-
5,566 RSS feeds.

ilar to others.

The most frequently occurring 6 out of 12 pattern are
shown in Figure 12. The horizontal axis shows the time
6 We also observe weekly fluctuation of posting rates, but we of the day (in hour) and the vertical axis shows the frac-

mainly focus on the daily pattern in this section. tion of postings generated in each hourly period. The re-

sult shows that quite diverse posting patterns exist in ourtrievals per day and the vertical axis shows the overall
RSS collection. For example, the locations of the peaks average delay at the given resource constraint.
are quite different among the clusters, sometimes occur-

ring in the morning, sometimes in the afternoon. More- 700— ‘ ‘ ‘ ‘ ‘ ‘
over, it shows that some feeds show a bursty behavior in O Heen scheduling
X . o s X . X etrieval schedu!lng
the posting generation within a very limited time win- 6o0F -8~ Resource allocation |
dow, like 10AM-12PM and 11PM-1AM. Toodl
These 12 posting-pattern clusters are used in our ex- g
periments in the next section to determine the optimal < 400¢
. ©
retrieval schedule of each RSS feed. 2 a0l
01 02 gzoo’ SN 1
100+ o R i
0.05 01 RS S
1 2 3 .4 5 6 7
% 5 10 15 20 % 5 10 15 20 . Number of retrievals per day per fejed .
0.4 0.4 Figure 13. Performance of 4 retrieval poli-
B 384 feeds B 377 feods cies under different resource constraints.
0.2 | 0.2
%5 10 15 2 % 5 10 15 2 This result shows that the retrieval scheduling (2)
o4 04 alone reduces the delay H2% compared to the uni-
s s form scheduling (1). The resource allocation (3) alone
' I ' reduces the delay 38%. When combined together (4),
o o we observe about0% reduction in delay.
0o 5 10 1’ 2 0 .o s 2 While the resource allocation and the retrieval

Figure 12. Six major posting patterns. scheduling policies are both effective in reducing the av-

erage delay, we note that the improvements are obtained
through different mechanisms. Under the resource allo-
4.4, Effectiveness of retrieval policy cation pollcy, resources are taken away from the.sources
) of low posting rates (or the sources of low impor-
~We now study the effectiveness of our proposed re- tance) and allocated to the sources of high posting rates
trieval policies. To measure the improvement from indi- (or of high importance). Thus, while we decreasedtre
vidual retrieval decisions, we compare the performance eragedelay, we end u;increalc,ingthe maximumdelay
of the following 4 retrieval policies: ') . .
_ _ _ for the sources of low posting rates under this policy. In
1. Uniform schedulingAll sources are retrieved the same contrast, the retrieval scheduling policy improves the de-
number of times and the retrieval points are scheduled at |y simply by selecting the best retrieval time without
u_nlform intervals. Th_e result from this policy can be con- reallocating resources, so the maximum delay is not af-
sidered as the baseline. _ fected by this policy. To illustrate this point, Table 1
2. Retrieval scheduling oniyAll sources are retrieved the shows the average and the maximum delays for the pre-
same number of times, but the retrieval points are opti- ;s foyr strategies assuming one retrieval per day per
mized based on our scheduling algorithm. .
i) i) source on average. We can see that the maximum de-
3. Resource allocation oniyWe retrieve postings different lay of strategy 2 (retrieval scheduling only) is the same
numbers of times depending on the source, but the re- . -
trieval points are scheduled evenly. i strqtegy 1 (“”'for”.‘)' .V\./h"e s_trategy 3. (re-
. . . source allocation) shows a significant increase in the
4. CombinedThe sources are retrieved different number of maximum delav. Given this result when it is imoor-
times. The retrieval points are also optimized using our y ’ - P
tant to keep a tight bound on the maximum delay, we

scheduling algorithm. i - _
i] may decide to employ the retrieval scheduling pol-
Based on our earlier results, the first 2-week data arejcy only.
used to learn the posting rates and posting patterns, and4 5 C . ith ori K
the remaining 76 days are used to simulate the retrievals ™ ** omparison with prior wor
and to compute the average delay under different re- In this section, we compare the result from our re-
source constraints. The results are shown in Figure 13.trieval policy against the policies proposed in the lit-

The horizontal axis shows the average number of re-erature. In particular, we compare against the two op-

will be more significant if users make more retrievals per
| day. This estimate shows the clear benefit of this proto-
col change and suggests that this change may be worth-
while to pursue.

| strategy | 1] 2 [3] 4
average delay (in min} 645 | 581 | 433 395
max delay (in min) 1440 | 1440 | 9120 | 10073
standard deviation 392 | 405 | 542 560
Table 1. Statistics breakdown of posting 5. Related work
delay using one retrieval per day.

There exists a large body of literature on Web-crawler
research [7, 9, 10, 15, 12, 4, 6, 5]. In spirit, the prob-
timal crawling policies described in [5]. For the com- lem setting of the crawler research is similar to ours,
parison, we implement the two policies in [5], measure _but the exact models and the overall goals are signif-
the resulting overall average delay, and show the results'c2ntly different. For example, reference [4, 6, 5] as-
in Table 2. In obtaining the delays, we assume one re-SUme the homogeneous Poisson model to describe Web-
trieval per day per feed. The two rows CGMO3(Age) P2ade changes (which dges not can|der.the fluctuations
and CGMO3(Freshness) show the delays from the op-I" the change_: rate as _dls_:cussed in Section 2.2) ar_1d_de-
timal age policy and the optimal freshness policy in the velop strategies to optimize freshness or age of existing

paper, respectively. For ours, we use @@mbinedpol- Web pages. In this paper, we propose the periodic inho-
icy from the previous section. mogeneous Poisson model to capture daily fluctuations

in the generation of new postings and study the prob-
lem of delay optimization, which is more appropriate in

| strategy | average delay (in min) our context.
Ours 395 In recent work [19, 29], more sophisticated goal met-
CGMO03(Age) 590 rics have been proposed to improve the freshipess
CGMO3(Freshness 40,105 ceived by usersthis is done by carefully optimizing
Table 2. Comparison with CGMO3 policy the crawling strategy based on the query load and user

click-through data. Since these studies are specifically
designed for search engines, however, their goal met-
. rics and crawling strategies are not directly applicable
From the table, we can see that the optimal freshness, o context. Also, in these studies, a page is assumed
policy shows significantly worse delay than the other , opange identically after every download; we believe

two policies. This high delay is because the freshnessy,, 5 more sophisticated change model, such as our pe-
policy decides to ignore the sites with high posting rates, i, gic inhomogeneous Poisson model, can further im-

as is We.|| chumented in [5]. The optimal age policy prove the results of these studies.
shows significantly better delay than the freshness pol-

icy, but still shows 50% more delay than cdombined
policy. The improvement of our policy comes from both
the fact that it can exploit the daily fluctuation of post-
ing rate€ and that it is specifically optimized for the de-
lay metric.

Reference [18] proposes thdivergence metric,
which is similar to our delay metric; interestingly, the fi-
nal optimization ends up quite different from ours be-
cause of the fundamental difference in the underlying ar-
chitecture. The reference assumes a source-cooperative
architecture, where data sources actively notify the
4.6. Savings from protocol changes clients of any changes, while we assumepudl archi-

We now briefly investigate the potential savings in tecture, Wherepassivedata sources are periodically
bandwidth from a protocol change that allows the re- contacted by clients.
trieval of new postings since the user’s last visit. Our ~ Researchers have also studied publisher-subscriber
data shows that the average size of a posting is 560Systems [1,3, 11,17, 25, 30] and proposed strategies for
bytes, and each RSS feed returns 12 most recent postthe efficient dissemination of information in these sys-
ings on average. Out of the 12 postings from each feed,tems. This bOdy of work mainly focuses on the efficient
we find that only about 4.3 postings are new after one filtering of incoming data stream against a large pool of
day on average. Therefore, if users retrieve new post-€xisting subscriber profiles; differently from this body
ings once a day, the protocol change can avoid down-Of work, our aggregator is not passively waiting for new
loading 7.7 postings on average, reducing the bandwidthdata to come in; instead, the aggregator actively pulls
consumption byr.7/12 = 64%.8 Clearly, the savings from different data sources to collect new postings.

7 The policies in [5] is derived based on the assumption that th 8 We assuming that the increased size of the protocol headegis
posting rate remains the same over time for each source ligible compared to the size of the postings.

Google Alerts [13] provides ways for users to sub- [9] E. Cohen and H. Kaplan. Refreshment Policies for Web
scribe to a set of news sources and get notified of any Content Caches. INFOCOM Conference2001.
new articles through an email. Unfortunately, the details [10] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramam-
of Google's implementation are closely guarded secret; ~ fitham, and P. Shenoy. Adaptive Push-Pull: Disseminat-
we believe our work provides the formal foundation to ing Dynamic Web Data. IWWW Conference001.

e . - . [11] F. Fabret, A. Jacobsen, F. Llirbat, J. Pereira, and K. Ross.
the delay minimization problem and investigates impor- Lo . -
. in thi in th i Filtering Algorithms and Implementation for Very Fast
tant issues in this context in the open literature. Publish/Subscribe Systems. BIGMOD Conference

i 2001.
6. Conclusion [12] A. Gal and J. Eckstein. Managing Periodically Updated

In this paper we have proposed and investigated the Data in Relational Databases: A Stochastic Modeling
problems related to an RSS aggregator that retrieves in- Approach.Journal of the ACM48(6):1141-1183, 2001.
formation from multiple RSS sources automatically. It [13] Google Alerts. htt p: / / www. googl e. cont
off-loads the bandwidth consumed at the RSS sites and_ _ &l erts. , ,
allows users a central access to new information. In par-14 - Gruhl. R. Guha, D. Liben-Nowell, and A. Tomkins.

ticular, we have developed a new RSS monitoring algo- Information Diffusion Through Blogspace. MWW
Conference2004.

rithm that exploits the non-uniformity of the generation [15] A. Labrinidis and N. Roussopoulos. Update Propagation

of new postings and is able to collect new data efficiently Strategies for Improving the Quality of Data on the Web.
using minimal resources. Our results have demonstrated | VLDB Conference2001.

that the aggregator can provide news alert significantly [16] A. Labrinidis and N. Roussopoulos. Balancing Perfor-
faster than the best existing approach under the same mance and Data Freshness in Web Database Servers. In
resource constraints. In addition, an empirical analysis VLDB Conference2003.

has shown that 2 weeks worth of data is good enough[17] L. Liu, C. Pu, and W. Tang. Continual Queries for In-

to learn and predict the characteristics of data genera- (€fnet Scale Event-Driven Information DeliveryEEE

L . . TKDE, 11:610-628, 1999.
.tlon in e.XIStmg. RSS feeds. Italso §hovys that Incorporat- [18] C.Olston and J. Widom. Best-Effort Cache Synchroniza-
ing the if-modified-since mechanism in RSS avoids re-

tion with Source cooperation. I8IGMOD Conference

trieval of redundant postings and significantly reduces 2002.

the bandwidth consumption. [19] S.Pandey and C. Olston. User-Centric Web Crawling. In
The ability to provide timely information to Web WWW Confereng005.

users is of high commercial value to a Web service [20] RSS 2.0 Specification. http://bl ogs. | aw.

provider in both attracting user traffic and mining user harvard. edu/ tech/rss.

behavior. We believe that providing an aggregated infor- [21] RSS growing pains. ht t p: // www. i nf owor | d.
mation portal is a promising direction to pursue given com arti ¢l e/ 04/ 07/ 16/ 29CPconnect i on_

. ; 1.htm.
tnheet growth of both information and users on the Inter- [22] Microsoft flip-flop may signal blog clog. ht t p:

/I news. com conl M crosoft+flip-flop+

Referen may+si gnal +bl og+cl og/ 2100- 1032\ %_
elerences 3- 5368454, ht m ?t ag=nef d. | ede.

[1] M. Altmel and J. M. Franklin. Efficient Filtering of XML [23] PubSubhtt p://ww. pubsub. com

Documents for Selective Dissemination of Information. [24] My Yahoo! htt p:// ny. yahoo. com

In VLDB Conferencg2000. [25] S. Shah, S. Dharmarajan, and K. Ramamritham. An Ef-
[2] B. Brewington and G. Cybenko. How Dynamic is the ficient and Resilient Approach to Filtering and Dissemi-
Web. InWWW Confereng000. nating Streaming Data. MLDB Conference2003.
[3] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Nia- [26] K. C. Sia and J. Cho. Efficient Monitoring Algorithm for
garaCQ: A Scalable Continuous Query System for In- Fast News Alert. Technical report, UCLA, 2005.
ternet Databases. BIGMOD Conferenge2000. [27] Slashdot Effect. http://en.w ki pedi a. org/
[4] J. Cho and H. Garcia-Molina. Synchronizing a database wi ki / Sl ashdot _ef fect.
to Improve Freshness. BIGMOD Conferenge2000. [28] H. Taylor and S. Karlin.An Introduction To Stochastic
[5] J. Cho and H. Garcia-Molina. Effective Page Refresh Modeling Academic Press, 3rd edition, 1998.
Policies for Web CrawlersACM TODS 28(4), 2003. [29] J. Wolf, M. Squillante, P. Yu, J. Sethuraman, and
[6] J. Cho and H. Garcia-Molina. Estimating Frequency of L. Ozsen. Optimal Crawling Strategies for Web Search
Change ACM TOIT, 3(3), August 2003. Engines. INWWW Conferenc002. o
[7] J. Cho and A. Ntoulas. Effective Change Detection Us- [30] T. Ye.m apd H. Garcia-Molina. The SIFT information dis-
ing Sampling. INVLDB Conference2002. semination systemACM TODS 24(4):529-565, 2000.

[8] E. G. Coffman, Jr., Z. Liu, and R. R. Weber. Optimal
robot scheduling for web search enginesournal of
Scheduling1(1), 1998.

