
DIRAC: A Scalable Lightweight Architecture for High Throughput Computing

V. Garonne, A. Tsaregorodtsev
Centre de Physique des Particules de Marseille

CNRS-IN2P3
163, avenue de Luminy Case 902
13288 Marseille cedex 09, France

garonne@cppm.in2p3.fr, atsareg@in2p3.fr

I. Stokes-Rees
Department of Particle Physics

University of Oxford
Oxford, OX1 3RH, UK

i.stokes-rees@physics.ox.ac.uk

Abstract

DIRAC (Distributed Infrastructure with Remote Agent
Control) has been developed by the CERN LHCb physics
experiment to facilitate large scale simulation and user
analysis tasks spread across both grid and non-grid com-
puting resources. It consists of a small set of distributed
stateless Core Services, which are centrally managed, and
Agents which are managed by each computing site. DIRAC
utilizes concepts from existing distributed computing mod-
els to provide a lightweight, robust, and flexible system.
This paper will discuss the architecture, performance, and
implementation of the DIRAC system which has recently
been used for an intensive physics simulation involving
more than forty sites, 90 TB of data, and in excess of one
thousand 1 GHz processor-years.

Keywords

grid computing, cluster computing, global comput-
ing, instant messaging, meta-scheduler, grid schedul-
ing, batch system, job pull

1 Introduction

The LHCb experiment is one of four particle physics ex-
periments currently in development at CERN, the European
Particle Physics Laboratory. Once operational, the LHCb
detector will produce data at a rate of 4 Gb/s[24], represent-
ing observations of collisions of sub-atomic particles. This
massive quantity of data then needs to be distributed around
the world for the 500 physicists at 100 sites to be able to
carry out analysis. Even before this analysis of real physics
data can begin a large number of parameter sweep[5] simu-
lations are required to verify aspects of the detector design,
algorithms, and theory.

While the four Large Hadron Collider (LHC) experi-
ments have coordinated with CERN to produce the LHC
Computing Grid (LCG) [6], there is still a requirement
within LHCb to manage and track computing tasks, pro-
vide a set of common services specific to LHCb, and to be
able to make use of hardware and software resources not
incorporated into LCG.

This system needed to be quickly and easily deployed
across Fourth or more sites, with little effort from local site
administrators, either for installation or maintenance. Fig-
ure 1 illustrates the computing sites currently contributing
to LHCb. Similarly, users needed to be able to access the
system from anywhere, with a minimal set of tools. The
need to support intense computational load also required
the system to be responsive and scalable, supporting over
10,000 simultaneous executing jobs, and 100,000 queued
jobs.

This paper discusses the DIRAC architecture (Dis-
tributed Infrastructure with Remote Agent Control) which
has been developed to meet these requirements and provide
a generic, robust grid computing environment. DIRAC in-
corporates aspects of grid, global, and cluster computing
paradigms. It is organized into a Service Oriented Architec-
ture (SOA), with several lightweight independent services,
following the decomposition found in the CERN ARDA
project[22]. As a meta-cluster management system, DIRAC
abstracts interfaces to a wide range of heterogeneous com-
puting and storage resources and provides simple APIs and
tools for users and developers. For scalability, simplic-
ity, and efficiency a pull scheduling model has been imple-
mented which favors high throughput, versus high perfor-
mance, job handling[23].

The paper is organized as follows: section 2 presents the
background which led to the development of the latest ver-
sion of DIRAC, while section 3 discusses the DIRAC archi-
tecture and main components in detail. Section 4 presents
the implementation choices and highlights features impor-
tant for robustness including the use of instant messaging

1

: DIRAC Sites
: DIRAC via LCG
: DIRAC and LCG Sites

Canada

Brasil

Taiwan

USA

Figure 1. Sites running DIRAC

technology. Section 5 discusses working experience. Sec-
tion 6 outlines plans for future development, and section 7
finishes with conclusions.

2 Background

Many modern cluster configurations, and all global com-
puting models, focus on high throughput, which attempts
to maximize the number of jobs completed, on a daily, or
longer, basis. This is typical of situations where the supply
of computational jobs greatly exceeds the available com-
puting resources, and the jobs are generally not time crit-
ical. This strongly favors a pull model, where computing
resources request jobs from a large job pool. In contrast, a
push model attempts to centrally optimize the allocation of
jobs to resources, and can be overwhelmed by the scale of
this problem. A pull model only needs to find one job to
match one resource, and only when a resource makes a job
request.

In 2002 the first version of DIRAC [29] was developed
to enable distributed physics simulation, using such a high
throughput pull based Agent/Service model which could
handle the extremely large number of jobs which would be
generated. The success of this system validated the broad
design principles of active, lightweight Agents which pulled
jobs from stateless Services, however the system was only
useful for a very limited class of uniform, centrally gener-
ated, simulations. The latest version of DIRAC sought to
expand on these principles and incorporate the best features
of several different computational paradigms. We catego-

rize large scale computational systems into four groups:

Super Computer Specialist machines primarily designed
for massive parallel processing with low latency, high
bandwidth connections between a large number of co-
located processors. Typically used for long runs of a
single algorithm by a single user. Examples include
the Earth Simulator (NEC), ASCI Q (HP), ASCI White
(IBM), and Cray X1.

Cluster Centrally administered high performance com-
modity hardware, software, and networking designed
to provide the most economic computing power for a
large number of users at a single site. Resource allo-
cation to users and computation tasks handled through
batch queuing software such as PBS[16], Condor[7] or
LSF[17].

Grid Federated computing resources which use common
interfaces typically to link together computing clusters.
The aim is to allow Virtual Organizations (VOs)[14] of
users who span institutional boundaries to share com-
puting resources. Examples include the Globus Toolkit
[15] used in NorduGrid [11], LCG[6], and EDG[4].

Global Computing Ad hoc networks of individual com-
puters, typically desktop machines, which act as slaves
for a central job server which usually supports a single
parameter sweep application. These operate in a cycle-
scavenging mode, using idle CPU power, and pull
jobs from the server. Some examples of this include
SETI@Home[26], BOINC[3], and distributed.net[9].

Of these, the Super Computer category is not applicable
to LHCb. In a similar manner to grid computing, DIRAC
aims to join disparate computing clusters, however with-
out the overhead of significant grid infrastructure being re-
quired at each site. By utilizing aspects used in global com-
puting systems, and designing Agents to run at the user-
level, it was possible to streamline the deployment process.
DIRAC aims to achieve the same objectives as existing grid
and cluster computational systems, which is to present users
and developers with a simple, uniform, interface to dis-
tributed, heterogeneous computing resources.

3 Architecture

DIRAC can be decomposed into four sections: Services,
Agents, Resources, and User Interface, as illustrated in fig-
ure 2. The core of the system is a set of independent, state-
less, distributed services. The services are meant to be ad-
ministered centrally and deployed on a set of high avail-
ability machines. Resources refer to the distributed storage
and computing resources available at remote sites, beyond

the control of central administration. Access to these re-
sources is abstracted via a common interface. Each comput-
ing resource is managed autonomously by an Agent, which
is configured with details of the site and site usage policy
by a local administrator. The Agent runs on the remote site,
and manages the resources there, job monitoring, and job
submission. The User Interface allows access to the Central
Services, for control, retrieval, and monitoring of jobs and
files.

Job Monitor Job Submission File Catalog
User Interface

Job Management
Service

Services

Resources

Job Monitoring
Service

Job Accounting
Service

Configuration
Service

Service
File catalog

Agent

Storage Grid system

Element
ComputingStorage Storage

Element Element

Agent

Element
Computing

Sites

browser

Agent Agent

Figure 2. Architecture overview

Jobs are created by users who interact with the system
via the Client components. All jobs are specified using
the ClassAd language, as are resource descriptions. These
are passed from the Client to the Job Management Ser-
vices (JMS), allocated to the Agents on-demand, submitted
to Computing Elements (CE), executed on a Worker Node
(WN), returned back to the JMS and finally retrieved by the
user.

An idea borrowed from global computing systems is the
cycle-stealing paradigm, where jobs are only run when re-
sources are not in use by the local users. This is similar to
common batch system backfill algorithms[27], except that
it operates only when there are completely free slots, rather
than fitting in short jobs ahead of future job reservations.

DIRAC has started to explore potentials for distributed
computing from instant messaging systems. High public
demand for such systems has led to highly optimized pack-
ages which utilize well defined standards, and are proven
to support thousands to tens-of-thousands of simultane-
ous users. While these have primarily been utilized for
person-to-person communication, it is clear that machine-
to-machine and person-to-machine applications are possi-
ble.

The following sub-sections discuss in greater detail the
key aspects of DIRAC.

3.1 Job Management Services

The JMS consists of the following services, as illustrated
in figure 3:

Job Receiver Accepts job submissions from clients, reg-
isters them to the Job Database and notifies the Opti-
mizer Service

Job Database Contains all the information about the job
parameters and dynamic job state

Optimizers Sorts jobs into global job queues and contin-
uously reshuffles them depending on queue states, job
load, and resources availability

Matchmaker Allocates jobs to resources by selecting from
the global job queues and using Condor Matchmaking

Job Receiver

Submission

Service

Job
Database

Optimizer Queue
Queue

Queue

Optimizer

Service
Matchmaker

Notification

Agent Agent Agent

Computing Resources

Job

Figure 3. Job Management Services

Most of the work in the JMS is performed by the Op-
timizers. They prioritize jobs in queues using a range of
techniques, and utilizing information from job parameters,
resource status, file locations, and system state. As a result
of this, jobs can be assigned to a particular computing re-
source which meets the job requirements, such as replicas
of input data files.

Optimizers are designed to be customizable, and sim-
ply need to implement a standard interface for interacting
with the queues they manage. Multiple Optimizers can ex-
ist in the system at the same time, and can be dynamically
inserted, removed, started, and stopped at run-time. This
allows new algorithms or heuristics for job prioritization to
be rapidly inserted into the system.

There are three phases in a typical push grid scheduling
system:

1. Scheduler collects resource status for entire grid

2. Scheduler selects job allocation to resources

3. Scheduler submits jobs to resources

For phase one, all the information concerning the system
needs to be made available at one place at one time. In a
large, federated grid environment, this is often impractical,
and information will often be unavailable, incorrect, or out
of date. In the second phase, the choice of the best pairs
of jobs and resources is an NP-complete problem and the
size of this problem increases with the number of jobs and
resources. This approach is often centralized, as in EDG[4],
and does not scale well.

In contrast, the DIRAC pull strategy has the following
phases:

1. Agent detects free computing resources

2. Agent requests job from Matchmaker

3. Matchmaker checks queues for appropriate match

4. Matchmaker returns best matching job to Agent

The previously difficult task of determining where free
computing resources exist is now distributed to the local
Agents (see section 3.2) which have an up to date view of
the local system state. In phase 3, Condor Matchmaking is
used. [23] The Matchmaker only compares one-on-one re-
quirements, with a round-robin on each of the job queues
until it finds a job which can run on that resource. This is an
O(n) operation, with the worst case being all n jobs queued
in the system are checked once against the resource charac-
teristics defined in the job request.

Typically it is found that job requirements do not vary
significantly within a system, therefore it is likely that a
match will be made early on (that is, in less than n com-
parisons), even if jobs are randomly distributed among the
queues. Both long matching time and the risk of job starva-
tion can be avoided through the use of an appropriate Opti-
mizer to move “best fit”, “starving”, or “high-priority” jobs
to the front of the appropriate queue. This frees the match
operation from necessarily considering all the jobs within
the system. As reported elsewhere[12], this allows a mix-
ture of standard and custom scheduling algorithms.

3.2 Agent

The Agent is deployed on a computing resource and in-
teracts directly with it. This Agent is completely under the
control of the local site administrators and can be run and
configured to operate in a variety of different ways, depen-
dent upon site policy and capabilities. The Agent is easily
deployable on a site and only needs outbound Internet con-
nectivity in order to contact the DIRAC Services.

The Agent design includes a module container and a set
of pluggable modules. The modules are executed in se-
quence. Typically a site runs several agents each having
its own set of modules, for example job management mod-
ules or data management modules. This feature makes the
DIRAC Agent very flexible, since new functionality can be
added easily, and sites can choose which modules they wish
to have running.

The most important of these Agent modules is the Job
Request module, which monitors the state of the local com-
puting resource and fetches jobs from the Matchmaker Ser-
vice when it detects free slots. Upon job submission to
the local batch system, it stores job parameters in a local
database. This allows it to verify the status of the jobs and
spot job failures. This information can also been checked
by a lightweight tunneling service interface in the agent,
provides by instant messaging technology (see section 4.4).
This interface also allows users to interact directly with the
agent.

3.3 Computing Element

The Computing Element is the abstracted view of a com-
puting resource, providing a standard API for job execu-
tion and monitoring. Using this, an Agent can easily deal
with heterogeneous computing resources. A Computing El-
ement is modeled as a Head Node which manages a cluster
of Worker Nodes. Such a system is assumed to have its own
local scheduler and local queues.

At present, DIRAC provides CE interfaces to LSF, PBS,
NQS, BQS, Sun Grid Engine, Condor, Globus, LCG, and
stand-alone systems. Each implementation deals with trans-
lating the DIRAC job requirements to locally understood
settings.

3.4 Data Management System

There is a great deal of complexity in the DIRAC Data
Management System which allows fault tolerant transfers,
replication, registration, and meta-data access of data be-
tween computing sites and long term storage sites. The
description here provides a brief outline of the three main
components of this system.

Storage Element (SE) This is defined entirely by a host,
a protocol, and a path. This definition is stored in
the Configuration Service (see section 3.5), and can be
used by any Agent or Job, either for retrieving files or
uploading generated files/results. Protocols currently
supported by the SE include: gridftp, bbftp, sftp, ftp,
http, rfio or local disk access. The SE access API is
similar to the Replica Manager interface of the EDG
project.[20]

File Catalogs DIRAC defines a simple interface for locat-
ing physical files from aliases and universal file iden-
tifiers. This has made it possible to utilize two inde-
pendent File Catalogs, one from the already existing
LHCb File Database, and another using the AliEn File
Catalog from the Alice project[1]. Catalogs can be
used interchangeably. In the recent LHCb Data Chal-
lenge they were both filled with replica information in
order to provide redundancy to this vital component of
the data management system.

Reliable Data Transfer Service Within a running job, all
outgoing data transfers are registered as Transfer Re-
quests in a transfer database local to each Agent. The
requests contain all the necessary instructions to move
a set of files in between the local storage and any of the
SEs defined in the DIRAC system. Different replica-
tion, retry, and fail-over mechanisms exist to maximize
the possibility of successfully transferring the data.

3.5 Configuration Service

It is a common challenge of distributed systems and Ser-
vice Oriented Architectures to share information across the
system. There is a network of Services, each of which need
to configure themselves, and find out configuration informa-
tion about the other Services. Users then need to know how
to access those Services and work with them. When consid-
ering a Configuration and Information Service for DIRAC,
it was felt that the existing mechanisms, such as UDDI[18],
MDS[13], and R-GMA[28, 8], were powerful, yet complex,
and required significant infrastructure to utilize.

In keeping with the principles of simplicity and
lightweight implementation, a network-enabled categorized
name/value pair system was implemented. Components
which use the Configuration Service do so via a Local Con-
figuration Service (LCS). This can get all information from
a local file, from a remote service, or via a combination of
the two.

It is possible to cache remote information and have alter-
nate remote services, in the event one Configuration Service
is not available. The semantics dictate that local values are
always taken in preference to remote values. If a value is
not found locally, the LCS will round-robin through the al-
ternate Configuration Service sources.

4 Implementation Details

The current implementation has been written largely in
Python, due to the rich set of library modules available, its
object oriented nature, and the ability rapidly prototype de-
sign ideas. All Client/Service and Agent/Service commu-
nication is done via XML-RPC calls, which are lightweight

and fast. Furthermore, instantiating and exposing the API of
a Service as a multi-threaded XML-RPC server in Python is
extremely straight forward and robust. For all Service and
Job state persistence, a MySQL database is used.

By keeping the implementation in Python, Clients and
Agents only require a Python interpreter for installation.
These components which are distributed to the users and
computing centers are also very small — less than one
megabyte compressed — which further facilitates a rapid
installation or update of the software. Software required for
jobs is installed in a paratrooper approach, which is to say
that each job installs all software it requires, if it is not al-
ready available. This software is cached and made available
for future jobs run by the same Agent.

The following expands on key implementation deci-
sions which have contributed to the successful operation of
DIRAC, such as failure tolerance, a robust and simple con-
figuration service, and the use of instant messaging.

4.1 Configuration Service Redundancy

The Configuration Service is the backbone for coordi-
nated access to information regarding the various DIRAC
Services. Every component within DIRAC utilizes a Local
Configuration Service. The duality of the file based infor-
mation and the XML-RPC remote API allows an LCS to
transparently use one or the other to acquire necessary in-
formation. Three strategies have been implemented to make
this system robust:

Duplication The central Configuration Service duplicates
its information to a secondary server which hosts a
backup service.

Fail-Over The Local Configuration Service will fail-over
once to the backup service if it fails to contact the pri-
mary service, and fail-over a second time to a file con-
taining a saved (but possibly out of date) copy of the
Configuration Service data. This second fail-over is es-
sential in the case of network outages so the job may,
for a time, proceed without contacting any remote ser-
vices.

Caching Value pairs and sections are cached locally on the
first request, speeding up subsequent operations, and
reducing the load on the Configuration Service.

While both the caching and file-based fail-over have the
risk of utilizing incorrect, out of date information, this was
considered preferable to outright job failure due to inability
to access the service.

4.2 Service and Agent Watchdogs

All Services and Agents are run under the runit daemon
watchdog[25]. This provides numerous advantages over

cron jobs or sysv style init scripts. It ensures that the com-
ponent will be restarted if it fails, or if the machine reboots.
It also has advanced process management features which
limit memory consumption and file handles, so one ser-
vice cannot incapacitate an entire system. Automatic time-
stamping and rotation of log files facilitates debugging, and
components can be paused, restarted, or temporarily dis-
abled. Furthermore, none of this requires root access.

4.3 Job Watchdog and Wrapper

For each job, a wrapper script prepares the execution
environment, downloads the necessary data and reports to
the Job Monitoring Service the Worker Node parameters. It
then spawns a watchdog process. This process periodically
checks the state of the job and sends a heart beat signal to
the Monitoring Service. It can also provide a control chan-
nel to the job via an instant messaging interface (see section
4.4). At the end of the job, the watchdog process reports
the job execution information, for example CPU time and
memory consumed, to the Monitoring Service. Finally, it
catches failed jobs and reports them appropriately.

4.4 Instant Messaging in Grid Computing

In order to provide asynchronous reliable messaging,
DIRAC has incorporated an instant messaging protocol into
all components of the system. While the DIRAC Services
expose their APIs via XML-RPC, due to the simplicity, ma-
turity, and robustness of this protocol, there is a need to
expose a monitoring and control channel to the transient
Agents and Jobs. No a priori information is available about
where or when an Agent or Job will run, and local net-
works often will not allow Agents or Jobs to start an XML-
RPC server that is externally accessible. This suggests a
client-initiated dynamic and asynchronous communications
framework should be used.

The Extensible Messaging and Presence Protocol
(XMPP), now an IETF Internet Draft[19], is used in all four
areas of DIRAC: User Interface, Jobs, Agents, and Services.
XMPP provides standard instant messaging functionality,
such as chat, group chat, broadcast message, and one-to-
one messaging. Furthermore, an RPC-like mechanism ex-
ists called Information/Query, (IQ) which can be used to ex-
pose an API of any XMPP entity. Finally, the roster mech-
anism facilitates automatic, real-time monitoring of XMPP
entities via their presence.

The Services use XMPP in certain places where fault tol-
erant, asynchronous messaging is important. For example,
the Job Receiver Service uses XMPP to notify the Opti-
mizer Service when it receives a new job. When the Op-
timizer gets this message, it will then sort the new job into
the appropriate queues, The IQ functionality has the poten-

tial to allow users to retrieve live information about running
jobs, something which is critical for interactive tasks, or for
job steering. It also greatly facilitates debugging and possi-
ble recovery of stuck jobs.

5 Working Experience

The DIRAC system is being used for the LHCb Data
Challenge 2004 (DC04), held from May to July 2004. The
goal of DC04 is to validate the LHCb distributed comput-
ing model based on the combined use of the LCG and con-
ventional computing centers. A large number of simula-
tion jobs will be run, producing terabytes of data which will
need to be redistributed to a network of computing cen-
ters for both organized (i.e. planned and predictable) and
chaotic analysis of the results.

The system has operated smoothly with a sustained level
of 2000 running jobs, and 600 gigabytes of data generated
and replicated daily. Figure 1 shows the participating sites,
and figure 4 shows a snapshot of the running job distribu-
tion. Using the runsv daemon control tools, discussed in
section 4.2, once a site has installed DIRAC the Agents
run autonomously, and restart after failures or reboots. The
monitoring system allows the performance of various sites
and the behavior of Agents and Jobs to be monitored by
anyone, which in practice falls to a central team who can
alert site administrators if problems are detected.

DIRAC.ScotGrid.uk

DIRAC.Zurich.ch

LCG.Cambridge.uk

DIRAC.CERN.ch

LCG.NIKHEF.nl

LCG.Imperial.uk

LCG.Legnaro.it

LCG.Milano.it

LCG.PIC.es

LCG.Krakow.pl

LCG.RAL.uk

LCG.Torino.it

LCG.USC.es

LCG.Toronto.ca

DIRAC.Lyon.fr

LCG.FZK.de

LCG.CNAF.it

LCG.Sheffield.uk

LCG.Triumf.ca
DIRAC.Santiago.es

DIRAC.Liverpool.uk

TOTAL RUNNING JOBS: 3025

DIRAC: 54% LCG: 46%

Figure 4. Snapshot of site distribution for run-
ning jobs during DC04

At the time of writing the DIRAC system is managing
tasks running directly at 20 computing centers, and at an-
other 20 sites via the LCG network. These 40 sites provide
a total of more than 3000 worker nodes. At this time, with
5000 jobs in the global queues, the Matchmaker responds to
Agent job requests in 0.4 seconds, on average. More than

40,000 jobs have been completed in the month of May with
an average duration of 23 hours. In terms of storage ca-
pacity, during DC04 the system has produced, stored and
transfered 20 terabytes of data. Each job produces about
400 megabytes, which is immediately replicated to several
sites for redundancy and to facilitate later data analysis.

5.1 Interoperability with LCG

DIRAC is able to make use of LCG by wrapping it in the
standard DIRAC batch system interface. The task flow is
similar to the one described in section 3, with the key dif-
ference that the job submitted to LCG is a generic DIRAC
Agent installation script, rather than a specific DIRAC job.
When the LCG job starts, the DIRAC Agent performs an
auto-install and configure, then operates in a run-once mode
where it fetches and executes a single job. This is very sim-
ilar to the Condor Glide-In concept.

Given the small size of the DIRAC Agent the overhead
to do this is minimal, and it provides the advantage that any
failure of the LCG job before the DIRAC job is fetched will
have no consequence on the DIRAC job pool. The disad-
vantage is that it adds another layer to the processing chain,
and prevents targeted submission of DIRAC jobs to LCG
sites. While other approaches are still under investigation
and development, this approach has been the most success-
ful and allowed substantial use of the LCG resources with a
low rate of failed jobs.

5.2 Challenges

The two greatest challenges with DIRAC have been
monitoring job status for a large number of jobs, and man-
aging data transfers. With tens of thousands of active jobs,
spread across 40 or more sites, there are inevitable problems
with network failures, power outages, incorrect configura-
tion, and software crashes. In the early release of DIRAC
this led to a build up of stalled jobs which claimed to be
running but never completed. Tracking these jobs down and
resubmitting them, as well as managing failed jobs and con-
firming that “successful” jobs really had completed all their
steps, required the implementation of cross-checks and ad-
ditional job monitoring, such as the heart beat mechanism,
mentioned above.

Managing data transfers for such large quantities of data
also proved challenging. In many cases network connec-
tions became backlogged, hung, or aborted transfers part
way through. These problems occurred on both the client
(sending) and server (receiving) side. Initially the bbftp pro-
tocol appeared to be the most reliable, but this shifted in
favor of gridftp[2], although gridftp was much more diffi-
cult to install and use. The queued Transfer Request system
with independent DIRAC Agents dedicated just to manag-

ing transfers (via the TransferAgent module) proved invalu-
able in providing reliable data transfers, possibly time de-
layed from the end of the job completion by several days.

6 Future Plans

The service oriented architecture of DIRAC proved that
the flexibility offered by this approach allows faster de-
velopment of an integrated distributed system. The pull
paradigm Agent/Service model has scaled well with a large
and varying set of computing resources, therefore we see
the future evolution of DIRAC along the lines of the ser-
vices based architecture proposed by the ARDA working
group at CERN[22] and broadly followed by the EGEE
middle-ware development group[21]. This should allow
DIRAC to be integrated seamlessly into the ARDA compli-
ant third party services, possibly filling functionality gaps,
or providing alternative service implementations. The use
of two different File Catalogs in the DIRAC system is
a good example of leveraging the developments of other
projects, and being able to “swap” services, provided they
implement a standard interface.

DIRAC currently operates in a trusted environment, and
therefore has had only a minimal emphasis on security is-
sues. A more comprehensive strategy is required for manag-
ing authentication and authorization of Agents, Users, Jobs,
and Services. It is hoped that a TLS based mechanism can
be put in place with encrypted and authenticated XML-RPC
calls using some combination of the GridSite project[10],
and the Clarens Grid Enabled Web Services Framework,
from the CERN CMS project.

While the pull model works well for parameter sweep
tasks, such as the physics simulations conducted during
DC04, it remains to be seen if individual analysis tasks,
which are more chaotic by nature, and require good re-
sponse time guarantees, will operate effectively. A new
class of Optimizer is planned which will allocate time-
critical jobs to high priority global queues in order that they
be run in a timely fashion.

Expanded use of the XMPP instant messaging frame-
work should allow both Jobs and Agents to expose a Service
interface, via the XMPP IQ mechanisms. This has great
promise for user interactivity, and real-time monitoring and
control of Agents and Jobs.

Furthermore, with this Service interface to Agents, a
peer-to-peer network of directly interacting Agents is en-
visioned. This would reduce, and possibly even eventually
eliminate, the reliance on the Central Services, as Agents
could dynamically load-balance by taking extra jobs from
overloaded sites.

7 Conclusions

The latest version of DIRAC has proven to be robust, and
easy to use and deploy. The pull paradigm has meant large
job queues and large numbers of running jobs do not de-
grade system performance, and job allocation to resources
takes under a second per job. The service oriented architec-
ture and Agent/Service model has allowed flexible inclusion
of new modules and rapid development of the entire DIRAC
framework.

As the “go-live” date for the LHC approaches, greater
integration with the LCG and ARDA projects is planned.
It is expected that DIRAC will form the basis of the dis-
tributed computing infrastructure for the LHCb experiment,
and be able to utilize Services developed by ARDA and the
underlying LCG network.

Acknowledgments

We gratefully acknowledge the involvement of the LHCb
Collaboration Data Management Group, and the managers
of the LHCb production sites. Help from the LCG Experi-
ment Support Group was invaluable for integrating DIRAC
with LCG.

References

[1] AliEN. http://www.alien.cern.ch.
[2] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Fos-

ter, C. Kesselman, S. Meder, V. Nefedova, D. Quesnal, and
S. Tuecke. Data Management and Transfer in High Perfor-
mance Computational Grid Environments. Parallel Comput-
ing Journal, 28 (5):749–771, May 2002.

[3] BOINC. http://boinc.berkeley.edu.
[4] G. Cancio, S. M. Fisher, T. Folkes, F. Giacomini,

W. Hoschek, D. Kelsey, and B. L. Tierney. The DataGrid
Architecture Version 2. In EDMS 439938. CERN, Feb 2004.

[5] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman.
Heuristics for scheduling parameter sweep applications in
grid environments. In Heterogeneous Computing Workshop,
pages 349–363, 2000.

[6] CERN. ”The LHC Computing Grid Project. http://
lcg.web.cern.ch/LCG/.

[7] Condor. http://www.cs.wisc.edu/condor/.
[8] A. W. Cooke et al. Relational Grid Monitoring Architecture

(R-GMA). 2003.
[9] distributed.net. http://www.distributed.net.

[10] A. T. Doyle, S. L. Lloyd, and A. McNab. Gridsite, gacl and
slashgrid: Giving grid security to web and file applications.
In Proceedings of UK e-Science All Hands Conference 2002,
Sept 2002.

[11] P. Eerola et al. The NorduGrid Architecture and Tools. In
Proceedings of Computing for High Energy Physics 2003,
2003.

[12] D. G. Feitelson and A. M. Weil. Utilization and Predictabil-
ity in Scheduling the IBM SP2 with Backfilling. In 12th In-
ternational Parallel Processing Symposium, pages 542–546,
1998.

[13] S. Fitzgerald. Grid Information Services for Distributed Re-
source Sharing. In Proceedings of the 10th IEEE Interna-
tional Symposium on High Performance Distributed Com-
puting (HPDC-10’01), page 181. IEEE Computer Society,
2001.

[14] I. Foster. The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. Lecture Notes in Computer Science,
2150, 2001.

[15] Globus. http://www.globus.org.
[16] Henderson and H. Tweten. Portable Batch System : Exter-

nal reference specification. Technical report, NASA Ames
Research Center, December 1996.

[17] R. Henderson. LSF: Load Sharing in Large-scale Heteroge-
neous Distributed Systems. In Proceedings of the Workshop
on Cluster Computing, December 1992.

[18] W. Hoschek. The Web Service Discovery Architecture.
In Proceedings of the 2002 ACM/IEEE conference on Su-
percomputing, pages 1–15. IEEE Computer Society Press,
2002.

[19] IETF. Extensible Messaging and Presence Proto-
col. http://www.ietf.org/html.charters/
xmpp-charter.html/.

[20] P. Kunszt, E. Laure, H. Stockinger, and K. Stockinger. Ad-
vanced Replica Management with Reptor. 5th International
Conference on Parallel Processing and Applied Mathemet-
ics, Sept 2003.

[21] E. Laure. EGEE Middleware Architecture. In EDMS
476451. CERN, June 2004.

[22] LHC. Architectural Roadmap Towards Distributed Analysis
- Final Report. Technical report, CERN, November 2003.

[23] M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mech-
anisms for High Throughput Computing, 1997.

[24] N. Neufeld. The lhcb online system. Nuclear Physics Pro-
ceedings Supplement, 120:105–108, 2003.

[25] G. Pape. runit Service Supervision Toolkit. http://
smarden.org/runit/.

[26] SETI@Home. http://setiathome.ssl.
berkeley.edu/.

[27] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sa-
dayappan. Selective Reservation Strategies for Backfill
Job Scheduling. In Proceedings of 8th Workshop on Job
Scheduling Strategies for Parallel Processing, July 2002.

[28] B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R. Wol-
sky, and M. Swany. A Grid Monitoring Architecture, Jan
2002.

[29] A. Tsaregorodsev et al. DIRAC - Distributed Implementa-
tion with Remote Agent Control. In Proceedings of Com-
puting in High Energy and Nuclear Physics (CHEP), April
2003.

