
Linux Block IO: Introducing Multi-queue SSD Access on
Multi-core Systems

Matias Bjørling*† Jens Axboe† David Nellans† Philippe Bonnet*
*IT University of Copenhagen

{mabj,phbo}@itu.dk
†Fusion-io

{jaxboe,dnellans}@fusionio.com

ABSTRACT
The IO performance of storage devices has accelerated from
hundreds of IOPS five years ago, to hundreds of thousands
of IOPS today, and tens of millions of IOPS projected in five
years. This sharp evolution is primarily due to the introduc-
tion of NAND-flash devices and their data parallel design. In
this work, we demonstrate that the block layer within the
operating system, originally designed to handle thousands
of IOPS, has become a bottleneck to overall storage system
performance, specially on the high NUMA-factor processors
systems that are becoming commonplace. We describe the
design of a next generation block layer that is capable of
handling tens of millions of IOPS on a multi-core system
equipped with a single storage device. Our experiments
show that our design scales graciously with the number of
cores, even on NUMA systems with multiple sockets.

Categories and Subject Descriptors
D.4.2 [Operating System]: Storage Management—Sec-
ondary storage; D.4.8 [Operating System]: Performance—
measurements

General Terms
Design, Experimentation, Measurement, Performance.

Keywords
Linux, Block Layer, Solid State Drives, Non-volatile Mem-
ory, Latency, Throughput.

1 Introduction
As long as secondary storage has been synonymous with
hard disk drives (HDD), IO latency and throughput have
been shaped by the physical characteristics of rotational de-
vices: Random accesses that require disk head movement
are slow and sequential accesses that only require rotation
of the disk platter are fast. Generations of IO intensive al-
gorithms and systems have been designed based on these
two fundamental characteristics. Today, the advent of solid
state disks (SSD) based on non-volatile memories (NVM)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SYSTOR ’13 June 30 - July 02 2013, Haifa, Israel
Copyright 2013 ACM 978-1-4503-2116-7/13/06 ...$15.00.

201220112010

4K
 R

ea
d

IO
PS

0
200k
400k
600k
800k

1M
785000

608000
498000

9000060000

SSD 1 SSD 2 SSD 3 SSD 4 SSD 5

Figure 1: IOPS for 4K random read for five SSD
devices.

(e.g., flash or phase-change memory [11, 6]) is transforming
the performance characteristics of secondary storage. SSDs
often exhibit little latency difference between sequential and
random IOs [16]. IO latency for SSDs is in the order of tens
of microseconds as opposed to tens of milliseconds for HDDs.
Large internal data parallelism in SSDs disks enables many
concurrent IO operations which, in turn, allows single de-
vices to achieve close to a million IOs per second (IOPS)
for random accesses, as opposed to just hundreds on tradi-
tional magnetic hard drives. In Figure 1, we illustrate the
evolution of SSD performance over the last couple of years.

A similar, albeit slower, performance transformation has
already been witnessed for network systems. Ethernet speed
evolved steadily from 10 Mb/s in the early 1990s to 100 Gb/s
in 2010. Such a regular evolution over a 20 years period has
allowed for a smooth transition between lab prototypes and
mainstream deployments over time. For storage, the rate of
change is much faster. We have seen a 10,000x improvement
over just a few years. The throughput of modern storage de-
vices is now often limited by their hardware (i.e., SATA/SAS
or PCI-E) and software interfaces [28, 26]. Such rapid leaps
in hardware performance have exposed previously unnoticed
bottlenecks at the software level, both in the operating sys-
tem and application layers. Today, with Linux, a single
CPU core can sustain an IO submission rate of around 800
thousand IOPS. Regardless of how many cores are used to
submit IOs, the operating system block layer can not scale
up to over one million IOPS. This may be fast enough for
today’s SSDs - but not for tomorrow’s.

We can expect that (a) SSDs are going to get faster, by
increasing their internal parallelism1 [9, 8] and (b) CPU

1If we look at the performance of NAND-flash chips, access
times are getting slower, not faster, in timings [17]. Access
time, for individual flash chips, increases with shrinking fea-
ture size, and increasing number of dies per package. The
decrease in individual chip performance is compensated by
improved parallelism within and across chips.

performance will improve largely due to the addition of more
cores, whose performance may largely remain stable [24, 27].

If we consider a SSD that can provide 2 million IOPS, ap-
plications will no longer be able to fully utilize a single stor-
age device, regardless of the number of threads and CPUs
it is parallelized across due to current limitations within the
operating system.

Because of the performance bottleneck that exists today
within the operating system, some applications and device
drivers are already choosing to bypass the Linux block layer
in order to improve performance [8]. This choice increases
complexity in both driver and hardware implementations.
More specifically, it increases duplicate code across error-
prone driver implementations, and removes generic features
such as IO scheduling and quality of service traffic shaping
that are provided by a common OS storage layer.

Rather than discarding the block layer to keep up with im-
proving storage performance, we propose a new design that
fixes the scaling issues of the existing block layer, while pre-
serving its best features. More specifically, our contributions
are the following:

1. We recognize that the Linux block layer has become a
bottleneck (we detail our analysis in Section 2). The
current design employs a single coarse lock design for
protecting the request queue, which becomes the main
bottleneck to overall storage performance as device
performance approaches 800 thousand IOPS. This sin-
gle lock design is especially painful on parallel CPUs,
as all cores must agree on the state of the request queue
lock, which quickly results in significant performance
degradation.

2. We propose a new design for IO management within
the block layer. Our design relies on multiple IO sub-
mission/completion queues to minimize cache coher-
ence across CPU cores. The main idea of our design
is to introduce two levels of queues within the block
layer: (i) software queues that manage the IOs sub-
mitted from a given CPU core (e.g., the block layer
running on a CPU with 8 cores will be equipped with
8 software queues), and (ii) hardware queues mapped
on the underlying SSD driver submission queue.

3. We evaluate our multi-queue design based on a func-
tional implementation within the Linux kernel. We
implement a new no-op block driver that allows de-
velopers to investigate OS block layer improvements.
We then compare our new block layer to the existing
one on top of the noop driver (thus focusing purely
on the block layer performance). We show that a
two-level locking design reduces the number of cache
and pipeline flushes compared to a single level design,
scales gracefully in high NUMA-factor architectures,
and can scale up to 10 million IOPS to meet the de-
mand of future storage products.

The rest of the paper is organized as follows: In Section 2
we review the current implementation of the Linux block
layer and its performance limitations. In Section 3 we pro-
pose a new multi-queue design for the Linux block layer. In
Section 4 we describe our experimental framework, and in
Section 5, we discuss the performance impact of our multi-
queue design. We discuss related work in Section 6, before
drawing our conclusions in Section 7.

Figure 2: Current single queue Linux block layer
design.

2 OS Block Layer
Simply put, the operating system block layer is responsible
for shepherding IO requests from applications to storage de-
vices [2]. The block layer is a glue that, on the one hand,
allows applications to access diverse storage devices in a uni-
form way, and on the other hand, provides storage devices
and drivers with a single point of entry from all applica-
tions. It is a convenience library to hide the complexity
and diversity of storage devices from the application while
providing common services that are valuable to applications.
In addition, the block layer implements IO-fairness, IO-error
handling, IO-statistics, and IO-scheduling that improve per-
formance and help protect end-users from poor or malicious
implementations of other applications or device drivers.

2.1 Architecture
Figure 2 illustrates the architecture of the current Linux
block layer. Applications submit IOs via a kernel system
call, that converts them into a data structure called a block
IO. Each block IO contains information such as IO address,
IO size, IO modality (read or write) or IO type (synchronous/
asynchronous)2. It is then transferred to either libaio for
asynchronous IOs or directly to the block layer for syn-
chronous IO that submit it to the block layer. Once an IO
request is submitted, the corresponding block IO is buffered
in the staging area, which is implemented as a queue, de-
noted the request queue.

Once a request is in the staging area, the block layer may
perform IO scheduling and adjust accounting information
before scheduling IO submissions to the appropriate storage

2See include/linux/blk types.h in the Linux kernel (ker-
nel.org) for a complete description of the Block IO data
structure.

Figure 3: Simplified overview of bottlenecks in the
block layer on a system equipped with two cores and
a SSD.

device driver. Note that the Linux block layer supports plug-
gable IO schedulers: noop (no scheduling), deadline-based
scheduling [12], and CFQ [10] that can all operate on IO
within this staging area. The block layer also provides a
mechanism for dealing with IO completions: each time an
IO completes within the device driver, this driver calls up
the stack to the generic completion function in the block
layer. In turn the block layer then calls up to an IO com-
pletion function in the libaio library, or returns from the
synchronous read or write system call, which provides the
IO completion signal to the application.

With the current block layer, the staging area is repre-
sented by a request queue structure. One such queue is
instantiated per block device. Access is uniform across all
block devices and an application need not know what the
control flow pattern is within the block layer. A consequence
of this single queue per device design however is that the
block layer cannot support IO scheduling across devices.

2.2 Scalability
We analyzed the Linux kernel to evaluate the performance
of the current block layer on high performance computing
systems equipped with high-factor NUMA multi-core pro-
cessors and high IOPS NAND-flash SSDs. We found that
the block layer had a considerable overhead for each IO;
Specifically, we identified three main problems, illustrated
in Figure 3:

1. Request Queue Locking: The block layer fundamentally
synchronizes shared accesses to an exclusive resource:
the IO request queue. (i) Whenever a block IO is in-
serted or removed from the request queue, this lock
must be acquired. (ii) Whenever the request queue is
manipulated via IO submission, this lock must be ac-
quired. (iii) As IOs are submitted, the block layer pro-
ceeds to optimizations such as plugging (letting IOs ac-
cumulate before issuing them to hardware to improve
cache efficiency), (iv) IO reordering, and (v) fairness
scheduling. Before any of these operations can pro-
ceed, the request queue lock must be acquired. This is
a major source of contention.

2. Hardware Interrupts: The high number of IOPS causes
a proportionally high number of interrupts. Most of to-
day’s storage devices are designed such that one core
(within CPU 0 on Figure 3) is responsible for han-
dling all hardware interrupts and forwarding them to
other cores as soft interrupts regardless of the CPU

IO
PS

Number of Cores

 1 socket

0
250k
500k
750k

1M
1.25M
1.5M

1 2 3 4 5 6

2 socket

2 4 6 8 10 12

4 socket

0
250k
500k
750k

1M
1.25M
1.5M

5 10 15 20 25 30 10 20 30 40 50 60 70 80

8 socket

Figure 4: IOPS throughput of Linux block layer as
a function of number of CPU’s issuing IO. Divided
into 1, 2, 4 and 8 socket systems. Note: Dotted line
show socket divisions.

issuing and completing the IO. As a result, a single
core may spend considerable time in handling these
interrupts, context switching, and polluting L1 and L2
caches that applications could rely on for data local-
ity [31]. The other cores (within CPU N on Figure 3)
then also must take an IPI to perform the IO comple-
tion routine. As a result, in many cases two interrupts
and context switches are required to complete just a
single IO.

3. Remote Memory Accesses: Request queue lock con-
tention is exacerbated when it forces remote mem-
ory accesses across CPU cores (or across sockets in
a NUMA architecture). Such remote memory accesses
are needed whenever an IO completes on a different
core from the one on which it was issued. In such
cases, acquiring a lock on the request queue to remove
the block IO from the request queue incurs a remote
memory access to the lock state stored in the cache of
the core where that lock was last acquired, the cache
line is then marked shared on both cores. When up-
dated, the copy is explicitly invalidated from the re-
mote cache. If more than one core is actively issuing
IO and thus competing for this lock, then the cache
line associated with this lock is continuously bounced
between those cores.

Figure 4 shows 512 bytes IOs being submitted to the ker-
nel as fast as possible; IOPS throughput is depicted as a
function of the number of CPU’s that are submitting and
completing IOs to a single device simultaneously. We ob-
serve that when the number of processes is lower than the
number cores on a single socket (i.e., 6), throughput im-
proves, or is at least maintained, as multiple CPU’s issue
IOs. For 2, 4, and 8-socket architectures which have largely
supplanted single socket machines in the HPC space, when
IOs are issued from a CPU that is located on a remote socket
(and typically NUMA node), absolute performance drops
substantially regardless the absolute number of sockets in
the system.

Remote cacheline invalidation of the request queue lock is
significantly more costly on complex four and eight socket
systems where the NUMA-factor is high and large cache di-
rectory structures are expensive to access. On four and eight

socket architectures, the request queue lock contention is so
high that multiple sockets issuing IOs reduces the through-
put of the Linux block layer to just about 125 thousand
IOPS even though there have been high end solid state de-
vices on the market for several years able to achieve higher
IOPS than this. The scalability of the Linux block layer is
not an issue that we might encounter in the future, it is a
significant problem being faced by HPC in practice today.

3 Multi-Queue Block Layer
As we have seen in Section 2.2, reducing lock contention
and remote memory accesses are key challenges when re-
designing the block layer to scale on high NUMA-factor
architectures. Dealing efficiently with the high number of
hardware interrupts is beyond the control of the block layer
(more on this below) as the block layer cannot dictate how a
device driver interacts with its hardware. In this Section, we
propose a two-level multi-queue design for the Linux block
layer and discuss its key differences and advantages over the
current single queue block layer implementation. Before we
detail our design, we summarize the general block layer re-
quirements.

3.1 Requirements
Based on our analysis of the Linux block layer, we identify
three major requirements for a block layer:

• Single Device Fairness

Many application processes may use the same device.
It is important to enforce that a single process should
not be able to starve all others. This is a task for the
block layer. Traditionally, techniques such as CFQ or
deadline scheduling have been used to enforce fairness
in the block layer. Without a centralized arbiter of de-
vice access, applications must either coordinate among
themselves for fairness or rely on the fairness policies
implemented in device drivers (which rarely exist).

• Single and Multiple Device Accounting

The block layer should make it easy for system admin-
istrators to debug or simply monitor accesses to stor-
age devices. Having a uniform interface for system per-
formance monitoring and accounting enables applica-
tions and other operating system components to make
intelligent decisions about application scheduling, load
balancing, and performance. If these were maintained
directly by device drivers, it would be nearly impossi-
ble to enforce the convenience of consistency applica-
tion writers have become accustom to.

• Single Device IO Staging Area

To improve performance and enforce fairness, the block
layer must be able to perform some form of IO schedul-
ing. To do this, the block layer requires a staging area,
where IOs may be buffered before they are sent down
into the device driver. Using a staging area, the block
layer can reorder IOs, typically to promote sequential
accesses over random ones, or it can group IOs, to sub-
mit larger IOs to the underlying device. In addition,
the staging area allows the block layer to adjust its
submission rate for quality of service or due to device
back-pressure indicating the OS should not send down
additional IO or risk overflowing the device’s buffering
capability.

3.2 Our Architecture
The key insight to improved scalability in our multi-queue
design is to distribute the lock contention on the single re-
quest queue lock to multiple queues through the use of two
levels of queues with distinct functionally as shown in Fig-
ure 5:

• Software Staging Queues. Rather than staging IO for
dispatch in a single software queue, block IO requests
are now maintained in a collection of one or more re-
quest queues. These staging queues can be configured
such that there is one such queue per socket, or per
core, on the system. So, on a NUMA system with 4
sockets and 6 cores per socket, the staging area may
contain as few as 4 and as many as 24 queues. The
variable nature of the request queues decreases the pro-
liferation of locks if contention on a single queue is not
a bottleneck. With many CPU architectures offering
a large shared L3 cache per socket (typically a NUMA
node as well), having just a single queue per proces-
sor socket offers a good trade-off between duplicated
data structures which are cache unfriendly and lock
contention.

• Hardware Dispatch Queues. After IO has entered the
staging queues, we introduce a new intermediate queu-
ing layer known as the hardware dispatch queues. Us-
ing these queues block IOs scheduled for dispatch are
not sent directly to the device driver, they are instead
sent to the hardware dispatch queue. The number
of hardware dispatch queues will typically match the
number of hardware contexts supported by the device
driver. Device drivers may choose to support anywhere
from one to 2048 queues as supported by the message
signaled interrupts standard MSI-X [25]. Because IO
ordering is not supported within the block layer any
software queue may feed any hardware queue without
needing to maintain a global ordering. This allows
hardware to implement one or more queues that map
onto NUMA nodes or CPU’s directly and provide a
fast IO path from application to hardware that never
has to access remote memory on any other node.

This two level design explicitly separates the two buffering
functions of the staging area that was previously merged
into a single queue in the Linux block layer: (i) support for
IO scheduling (software level) and (ii) means to adjust the
submission rate (hardware level) to prevent device buffer
over run.

The number of entries in the software level queue can dy-
namically grow and shrink as needed to support the out-
standing queue depth maintained by the application, though
queue expansion and contraction is a relatively costly op-
eration compared to the memory overhead of maintaining
enough free IO slots to support most application use. Con-
versely, the size of the hardware dispatch queue is bounded
and correspond to the maximum queue depth that is sup-
ported by the device driver and hardware. Today many
SSD’s that support native command queuing support a queue
depth of just 32, though high-end SSD storage devices may
have much deeper queue support to make use of the high
internal parallelism of their flash architecture. The 32 in-
flight request limit found on many consumer SSD’s is likely
to increase substantially to support increased IOPS rates as

Figure 5: Proposed two level Linux block layer de-
sign.

a 1 million IOPS capable device will cause 31 thousand con-
text switches per second simply to process IO in batches of
32. The CPU overhead of issuing IO to devices is inversely
proportional to the amount of IO that is batched in each
submission event.

3.2.1 IO-Scheduling
Within the software queues, IOs can be shaped by per CPU
or NUMA node policies that need not access local memory.
Alternatively, policies may be implemented across software
queues to maintain global QoS metrics on IO, though at a
performance penalty. Once the IO has entered the hard-
ware dispatch queues, reordering i/Nums no longer possi-
ble. We eliminate this possibility so that the only con-
tenders for the hardware dispatch queue are inserted to the
head of the queue and removed from the tail by the device
driver, thus eliminating lock acquisitions for accounting or
IO-scheduling. This improves the fast path cache locality
when issuing IO’s in bulk to the device drivers.

Our design has significant consequences on how IO may be
issued to devices. Instead of inserting requests in the hard-
ware queue in sorted order to leverage sequential accesses
(which was a main issue for hard drives), we simply follow
a FIFO policy: we insert the incoming block IO submitted
by core i at the top of the request queue attached to core
i or the NUMA socket this core resides on. Traditional IO-
schedulers have worked hard to turn random into sequential
access to optimize performance on traditional hard drives.
Our two level queuing strategy relies on the fact that mod-
ern SSD’s have random read and write latency that is as fast
as their sequential access. Thus interleaving IOs from multi-
ple software dispatch queues into a single hardware dispatch
queue does not hurt device performance. Also, by inserting

requests into the local software request queue, our design
respects thread locality for IOs and their completion.

While global sequential re-ordering is still possible across
the multiple software queues, it is only necessary for HDD
based devices, where the additional latency and locking over-
head required to achieve total ordering does not hurt IOPS
performance. It can be argued that, for many users, it is
no longer necessary to employ advanced fairness scheduling
as the speed of the devices are often exceeding the ability
of even multiple applications to saturate their performance.
If fairness is essential, it is possible to design a scheduler
that exploits the characteristics of SSDs at coarser granu-
larity to achieve lower performance overhead [23, 13, 19].
Whether the scheduler should reside in the block layer or on
the SSD controller is an open issue. If the SSD is responsible
for fair IO scheduling, it can leverage internal device paral-
lelism, and lower latency, at the cost of additional interface
complexity between disk and OS [8, 4].

3.2.2 Number of Hardware Queues
Today, most SATA, SAS and PCI-E based SSDs, support
just a single hardware dispatch queue and a single comple-
tion queue using a single interrupt to signal completions.
One exception is the upcoming NVM Express (NVMe) [18]
interface which supports a flexible number of submission
queues and completion queues. For devices to scale IOPS
performance up, a single dispatch queue will result in cross
CPU locking on the dispatch queue lock, much like the previ-
ous request queue lock. Providing multiple dispatch queues
such that there is a local queue per NUMA node or CPU will
allow NUMA local IO path between applications and hard-
ware, decreasing the need for remote memory access across
all subsections of the block layer. In our design we have
moved IO-scheduling functionality into the software queues
only, thus even legacy devices that implement just a single
dispatch queue see improved scaling from the new multi-
queue block layer.

3.2.3 Tagged IO and IO Accounting
In addition to introducing a two-level queue based model,
our design incoporates several other implementation improve-
ments. First, we introduce tag-based completions within the
block layer. Device command tagging was first introduced
with hardware supporting native command queuing. A tag
is an integer value that uniquely identifies the position of the
block IO in the driver submission queue, so when completed
the tag is passed back from the device indicating which IO
has been completed. This eliminates the need to perform a
linear search of the in-flight window to determine which IO
has completed.

In our design, we build upon this tagging notion by al-
lowing the block layer to generate a unique tag associated
with an IO that is inserted into the hardware dispatch queue
(between size 0 and the max dispatch queue size). This tag
is then re-used by the device driver (rather than generating
a new one, as with NCQ). Upon completion this same tag
can then be used by both the device driver and the block
layer to identify completions without the need for redundant
tagging. While the MQ implementation could maintain a
traditional in-flight list for legacy drivers, high IOPS drivers
will likely need to make use of tagged IO to scale well.

Second, to support fine grained IO accounting we have
modified the internal Linux accounting library to provide
statistics for the states of both the software queues and dis-

patch queues. We have also modified the existing tracing
and profiling mechanisms in blktrace, to support IO tracing
for future devices that are multi-queue aware. This will al-
low future device manufacturers to optimize their implemen-
tations and provide uniform global statistics to HPC cus-
tomers whose application performance is increasingly dom-
inated by the performance of the IO-subsystem.

3.3 Multiqueue Impact on Device Manufac-
turers

One drawback of the our design is that it will require some
extensions to the bottom edge device driver interface to
achieve optimal performance. While the basic mechanisms
for driver registration and IO submission/completion remain
unchanged, our design introduces these following require-
ments:

• HW dispatch queue registration: The device driver must
export the number of submission queues that it sup-
ports as well as the size of these queues, so that the
block layer can allocate the matching hardware dis-
patch queues.

• HW submission queue mapping function: The device
driver must export a function that returns a mapping
between a given software level queue (associated to
core i or NUMA node i), and the appropriate hardware
dispatch queue.

• IO tag handling: The device driver tag management
mechanism must be revised so that it accepts tags gen-
erated by the block layer. While not strictly required,
using a single data tag will result in optimal CPU us-
age between the device driver and block layer.

These changes are minimal and can be implemented in
the software driver, typically requiring no changes to exist-
ing hardware or software. While optimal performance will
come from maintaining multiple hardware submission and
completion queues, legacy devices with only a single queue
can continue to operate under our new Linux block layer
implementation.

4 Experimental Methodology
In the remaining of the paper, we denote the existing block
layer as single queue design (SQ), our design as the multi-
queue design (MQ), and a driver which bypasses the Linux
block layer as Raw. We implemented the MQ block layer as
a patch to the Linux kernel 3.103.

4.1 Hardware Platforms
To conduct these comparisons, we rely on a null device
driver, i.e., a driver that is not connected to an underly-
ing storage device. This null driver simply receives IOs as
fast as possible and acknowledges completion immediately.
This pseudo block device can acknowledge IO requests faster
than even a DRAM backed physical device, making the null
block device an ideal candidate for establishing an optimal
baseline for scalability and implementation efficiency.

Using the null block device, we experiment with 1, 2, 4
and 8 sockets systems, i.e., Sandy Bridge-E, Westmere-EP,

3Our implementation is available online at http:
//git.kernel.dk/?p=linux-block.git;a=shortlog;
h=refs/heads/new-queue

Platform/Intel
Sandy
Bridge-E

Westmere-
EP

Nehalem-
EX

Westmere-
EX

Processor i7-3930K X5690 X7560 E7-2870

Num. of Cores 6 12 32 80

Speed (Ghz) 3.2 3.46 2.66 2.4

L3 Cache (MB) 12 12 24 30

NUMA nodes 1 2 4 8

Table 1: Architecture of Evaluation Systems

Nehalem-EX and Westmere-EX Intel platforms. Table 1
summarizes the characteristics of these four platforms. The
1, 2 and 4-sockets systems use direct QPI links as intercon-
nect between sockets, while the 8-nodes system has a lower
and upper CPU board (with 4 sockets each) and an intercon-
nect board for communication. We disabled the turbo boost
and hyper-threading CPU features as well as any ACPI C
and P-state throttling on our systems to decrease the vari-
ance in our measurements that would be caused by power
savings features.

4.2 IO Load Generation
We focus our evaluations on latency and throughput. We
experiment with latency by issuing a single IO per partici-
pating core at a time using the pread/pwrite interface of the
Linux kernel. We experiment with throughput by overlap-
ping the submission of asynchronous IOs. In the throughput
experiment we sustain 32 outstanding IOs per participating
core, i.e., if 8 cores are issuing IOs, then we maintain 256
outstanding IOs. We use 32 IOs per process context because
it matches the requirements of today’s SSD devices. Our IO-
load is generated using the flexible io generator (fio) [14] that
allows us to carefully control the queue-depth, type, and dis-
tribution of IO onto a the LBA space of the block device. In
all experiments we use 512 bytes read IO’s, though the type
of IO is largely irrelevant since the null block driver does
not perform any computation or data transfer, it simply ac-
knowledges all requests immediately.

4.3 Performance Metrics
The primary metrics for our experiments are absolute through-
put (IOPS) and latency (µ-seconds) of the block layer.

5 Results
In a first phase, we compare our new block layer design
(MQ) with the existing Linux block layer (SQ), and the op-
timal baseline (Raw). In a second phase, we investigate how
our design allows the block layer to scale as the number of
available cores in the system increases. We leave a perfor-
mance tuning study of MQ (e.g., quality of the performance
optimizations within the block layer) as a topic for future
work.

For each system configuration, we create as many fio pro-
cesses as there are cores and we ensure that all cores are
utilized 100%. For the 1 socket system, the maximum num-
ber of cores is 6. For the 2 (resp., 4 and 8) sockets system,
the maximum number of core is 12 (resp., 32 and 80), and
we mark the separation between both 6 (resp., 8 and 10)
cores sockets with a vertical dotted line. Unless otherwise
noted, for MQ, a software queue is associated to each core
and a hardware dispatch queue is associated to each socket.

Number of Cores

IO
PS

0
2.5M

5M
7.5M
10M

12.5M
15M

1 2 3 4 5 6

1 socket

2 4 6 8 10 12

2 socket 4 socket

5 10 15 20 25 30

8 socket

10 20 30 40 50 60 70 80

MQ
SQ
Raw

Figure 6: IOPS for single/multi-queue and raw on the 1, 2, 4 and 8-nodes systems.

5.1 Comparing MQ, SQ and Raw
Figure 6 presents throughput (in IOPS) for SQ, MQ and
Raw as a function of the number of cores available in the 1
socket, 2-sockets, 4-sockets, and 8-sockets systems respec-
tively. Overall, we can make the following observations.
First, with the single queue block layer implementation,
throughput is limited below 1 million IOPS regardless of
the number of CPUs issuing IO or of the number of sockets
in the system. The current Linux block layer implementa-
tion can not sustain more than 1 million IOPS on a single
block device.

Second, our new two layer multi-queue implementation
improves performance significantly. The system can sustain
up to 3.5 million IOPS on a single socket system. However,
in multi-socket systems scaling does not continue at nearly
the same rate.

Let us analyze those results in more details:

1. The scalability problems of SQ are evident as soon as
more than one core is used in the system. Additional
cores spend most of their cycles acquiring and releasing
spin locks for the single request queue and as such do
not contribute to improving throughput. This prob-
lem gets even worse on multi-socket systems, because
their inter-connects and the need to maintain cache-
coherence.

2. MQ performance is similar to SQ performance on a sin-
gle core. This shows that the overhead of introducing
multiple queues is minimal.

3. MQ scales linearly within one socket. This is because
we removed the need for the block layer to rely on syn-
chronization between cores when block IOs are manip-
ulated inside the software level queues.

4. For all systems, MQ follows the performance of Raw
closely. MQ is in fact a constant factor away from the
raw measurements, respectively 22%, 19%, 13% and
32% for the 1, 2, 4, 8-sockets systems. This overhead
might seem large, but the raw baseline does not im-
plement logic that is required in a real device driver.
For good scalability, the MQ performance just needs
to follow the trend of the baseline.

5. The scalability of MQ and raw exhibits a sharp dip
when the number of sockets is higher than 1. We see
that throughput reaches 5 million IOPS (resp., 3.8 and
4) for 6 cores (resp., 7 and 9) on a 2 sockets system
(resp., 4 and 8 sockets system). This is far from the

1 socket 2 sockets 4 sockets 8 sockets
SQ 50 ms 50 ms 250 ms 750 ms
MQ 50 ms 50 ms 50 ms 250 ms
Raw 50 ms 50 ms 50 ms 250 ms

Table 2: Maximum latency for each of the systems.

10 million IOPS that we could have hoped for. Inter-
estingly, MQ follows roughly the raw baseline. There
is thus a problem of scalability, whose root lies outside
the block layer, that has a significant impact on perfor-
mance. We focus on this problem in the next Section.

Let us now turn our attention to latency. As we explained
in the previous section, latency is measured through syn-
chronous IOs (with a single outstanding IO per participat-
ing core). The latency is measured as the time it takes to
go from the application, through the kernel system call, into
the block layer and driver and back again. Figure 7 shows
average latency (in µ-seconds) as a function of the number
of cores available for the four systems that we study.

Ideally, latency remains low regardless of the number of
cores. In fact, remote memory accesses contribute to in-
crease latency on multi-sockets systems. For SQ, we observe
that latency increases linearly with the number of cores,
slowly within one socket, and sharply when more than one
socket is active. For MQ, latency remains an order of mag-
nitude lower than for SQ. This is because, for MQ, the only
remote memory accesses that are needed are those concern-
ing the hardware dispatch queue (there is no remote memory
accesses for synchronizing the software level queues). Note
that, on 8 sockets system, the SQ graph illustrates the per-
formance penalty which is incurred when crossing the inter-
connect board (whenever 2, 4, 6 and 8 sockets are involved).

Table 2 shows the maximum latency across all experi-
ments. With SQ, the maximum latency reaches 250 millisec-
onds in the 4 sockets system and 750 milliseconds on the 8
sockets system. Interestingly, with SQ on a 8 sockets sys-
tems, 20% of the IO requests take more than 1 millisecond to
complete. This is a very significant source of variability for
IO performance. In contrast, with MQ, the number of IOs
which take more than 1ms to complete only reaches 0.15%
for an 8 socket system, while it is below 0.01% for the other
systems. Note Raw exhibits minimal, but stable, variation
across all systems with around 0.02% of the IOs that take
more than 1ms to complete.

Number of Cores

1 socket
La

te
nc

y
(u

s)

1

10

100

1k

10k

1 2 3 4 5 6

SQ
MQ
Raw

2 socket

2 4 6 8 10 12

4 socket

5 10 15 20 25 30 10 20 30 40 50 60 70 80

8 socket

Figure 7: Latency on the 1, 2, 4 and 8 node system using the null device.

IO
PS

0
2.5M

5M
7.5M
10M

12.5M
15M

Number of Cores
10 20 30 40 50 60 70 80

Raw
MQ
Raw (Original)
MQ (Original)

Figure 8: IOPS for MQ and raw with libaio fixes
applied on the 8-nodes systems.

5.2 Improving Application Level IO Submis-
sion

The throughput graphs from the previous Section exposed
scalability problem within the Linux stack, on top of the
block layer. Through profiling we were able to determine
that the asynchronous (libaio) and direct IO layers, used
within the kernel to transfer block IOs from userspace into
to the block layer, have several bottlenecks that have are
first being exposed with the new MQ block layer implemen-
tation. These bottlenecks are: (i) a context list lock is is-
sued for each request, (ii) a completion ring in libaio used
to manage sleep/wakeup cycles and (iii) a number of shared
variables are being updated throughout the library. We re-
moved these bottlenecks through a series of implementation
improvements.

First, we replaced the context list lock with a lockless list,
which instead of using mutexes to update a variable used the
compare-and-swap instruction of the processor to perform
the update. Second, we eliminated the use of the completion
ring as it caused an extra lock access when updating the
number of elements in the completion list, which in the worst
case, could put the application process to sleep. Third, we
used atomic compare-and-swap instructions to manipulate
the shared counters for internal data structures (e.g. the
number of users of AIO context) instead of the native mutex
structures.

Figure 8 demonstrates the IOPS of the raw and MQ de-
signs using this new userspace IO submission library, on the
8-socket system, which has the hardest time maintaining IO
scalability. We observe that both the MQ and Raw imple-
mentations, while still losing efficiency when moving to a
second socket, are able to scale IOPS near linearly up to the
maximum number of cores within the system. The multi-
queue design proposed here allows the block layer to scale up

IO
PS

0
2.5M

5M
7.5M
10M

12.5M
15M

Number of Cores
10 20 30 40 50 60 70 80

Per-core
Per-node
Single

Figure 9: IOPS for a single software queue with var-
ied number of mapped hardware dispatch queues on
the 8 socket system.

to 10 million IOPS utilizing 70s cores on an 8 socket NUMA
system while maintaining the conveniences of the block layer
implementation for application compatibility. We recognize
that the efficiency of the MQ (and Raw) implementations
drops significantly when moving from one socket onto a sec-
ond. This indicates that there are further bottlenecks to be
improved upon in Linux that lay outside the block layer.
Possible candidates are interrupt handling, context switch-
ing improvements, and other core OS functions that we leave
for future work.

5.3 Comparing Allocation of Software and
Hardware Dispatch Queues

As our design introduces two levels of queues (the soft-
ware and hardware dispatch queues), we must investigate
how number of queues defined for each level impacts perfor-
mance. We proceed in two steps. First, we fix the number
of software level queues to one and we vary the number
of hardware dispatch queues. Second, we fix the number
of software level queues to one per core and we vary the
number of hardware dispatch queues. In both experiments,
the number of hardware dispatch queues is either one, one
per core (denoted per-core) or one per socket (denoted per-
socket). All experiments with the MQ block layer on on the
8-socket system.

Figure 9 presents throughput using a single software queue.
We observe that all configurations show a sharp performance
dip when the second socket is introduced. Furthermore, we
observe that a single software and hardware dispatch queue
perform significantly worse on the second socket, but follow
each other when entering the third socket. Overall, this ex-
periment shows that a single software queue does not allow
the block layer to scape gracefully.

We show in Figure 10 the results of our experiments with

IO
PS

0
2.5M

5M
7.5M
10M

12.5M
15M

Number of Cores
10 20 30 40 50 60 70 80

Per-core
Per-node
Single

Figure 10: IOPS for per-core software queue with a
different number of hardware dispatch queues.

a software queue per core. We see that combining multiple
software and hardware dispatch queues enable high perfor-
mance, reaching more than 15 million IOPS using the least
contended per-core/per-core queue mapping. The per-node
hardware dispatch queue configuration also scales well up
to the fifth socket, but then the per-node slowly decrease
in throughput. This occur when the socket interconnect
becomes the bottleneck. Further performance is possible
as more processes are added, but they slightly suffer from
less available bandwidth. To achieve the highest through-
put, per-core queues for both software and hardware dis-
patch queues are advised. This is easily implemented on the
software queue side, while hardware queues must be imple-
mented by the device itself. Hardware vendors can restrict
the number of hardware queues to the system sockets avail-
able and still provide scalable performance.

6 Related Work
Our redesign of the block layer touch on network, hardware
interfaces and NUMA systems. Below we describe related
work in each of these fields.

6.1 Network
The scalability of operating system network stacks has been
addressed in the last 10 years by incorporating multiple
sender and receiver queues within a single card to allow a
proliferation of network ports [1, 21]. This allows a sin-
gle driver to manage multiple hardware devices and reduce
code and data structure duplication for common function-
ality. Our work builds upon the foundation of networking
multi-queue designs by allowing a single interface point, the
block device, with multiple queues within the software stack.

Optimization of the kernel stack itself, with the purpose of
removing IO bottlenecks, has been studied using the Mon-
eta platform [7]. Caulfield et al. propose to bypass the
block layer and implement their own driver and single queue
mechanism to increase performance. By bypassing the block
layer, each thread issues an IO and deals with its comple-
tion. Our approach is different, as we propose to redesign
the block layer thus improving performance across all de-
vices, for all applications.

6.2 Hardware Interface
The NVMe interface [18] attempts to address many of the
scalability problems within the block layer implementation.
NVMe however proposes a new dynamic interface to accom-
modate the increased parallelism in NVM storage on which
each process has its own submission and completion queue
to a NVM storage device. While this is excellent for scalabil-

ity, it requires application modification and pushes much of
the complexity of maintaining storage synchronization out
of the operating system into the application. This also ex-
poses security risks to the application such as denial of ser-
vice without a central trusted arbitrar of device access.

6.3 NUMA
The affect of NUMA designs on parallel applications has
been studied heavily in the HPC space [22, 30, 15, 20] and
big data communities [29, 3, 5]. We find that many of
these observations, disruptive interrupts, cache locality, and
lock-contention have the same negative performance penalty
within the operating system and block layer. Unfortunately,
as a common implementation for all applications, some tech-
niques to avoid lock contention such as message passing sim-
ply are in-feasible to retrofit into a production operating
system built around shared memory semantics.

One approach to improving IO performance is to access
devices via memory-mapped IO. While this does save some
system call overhead, this does not fundamentally change or
improve the scalability of the operating system block layer.
Additionally, it introduces a non-powercut safe fault domain
(the DRAM page-cache) that applications may be un-aware
of while simultaneously requiring a large application re-write
to take leverage.

7 Conclusions and Future Work
In this paper, we have established that the current design
of the Linux block layer does not scale beyond one million
IOPS per device. This is sufficient for today’s SSD, but not
for tomorrow’s. We proposed a new design for the Linux
block layer. This design is based on two levels of queues in
order to reduce contention and promote thread locality. Our
experiments have shown the superiority of our design and its
scalability on multi-socket systems. Our multiqueue design
leverages the new capabilities of NVM-Express or high-end
PCI-E devices, while still providing the common interface
and convenience features of the block layer.

We exposed limitations of the Linux IO stack beyond the
block layer. Locating and removing those additional bottle-
necks is a topic for future work. Future work also includes
performance tuning with multiple hardware queues, and ex-
periments with multiqueue capable hardware prototypes. As
one bottleneck is removed, a new choke point is quickly cre-
ated, creating an application through device NUMA-local
IO-stack is an on-going process. We intend to work with
device manufacturers and standards bodies to ratify the in-
clusion of hardware capabilities that will encourage adoption
of the multiqueue interface and finalize this new block layer
implementation for possible inclusion in the mainline Linux
kernel.

8 References

[1] Improving network performance in multi-core systems.
Intel Corporation, 2007.

[2] J. Axboe. Linux Block IO present and future. Ottawa
Linux Symposium, 2004.

[3] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schupbach, and
S. Akhilesh. The multikernel: a new OS architecture
for scalable multicore systems. Symposium on
Operating Systems Principles, 2009.

[4] M. Bjørling, P. Bonnet, L. Bouganim, and N. Dayan.
The necessary death of the block device interface. In
Conference on Innovative Data Systems Research,
2013.

[5] S. Boyd-wickizer, A. T. Clements, Y. Mao,
A. Pesterev, M. F. Kaashoek, R. Morris, and
N. Zeldovich. An Analysis of Linux Scalability to
Many Cores. Operating Systems Design and
Implementation, 2010.

[6] G. W. Burr, M. J. Breitwisch, M. Franceschini,
D. Garetto, K. Gopalakrishnan, B. Jackson, C. Lam,
and A. Luis. Phase change memory technology.
Journal of Vacuum Science and Technology B,
28(2):223–262, 2010.

[7] A. M. Caulfield, A. De, J. Coburn, T. I. Mollov, R. K.
Gupta, and S. Swanson. Moneta: A high-performance
storage array architecture for next-generation,
non-volatile memories. In Proceedings of The 43rd
Annual IEEE/ACM International Symposium on
Microarchitecture, 2010.

[8] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De,
J. Coburn, and S. Swanson. Providing safe, user space
access to fast, solid state disks. SIGARCH Comput.
Archit. News, 40(1):387–400, Mar. 2012.

[9] S. Cho, C. Park, H. Oh, S. Kim, Y. Y. Yi, and
G. Ganger. Active Disk Meets Flash: A Case for
Intelligent SSDs. Technical Report CMU-PDL-11-115,
2011.

[10] Completely Fair Queueing (CFQ) Scheduler.
http://en.wikipedia.org/wiki/CFQ.

[11] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better I/O through
byte-addressable, persistent memory. Symposium on
Operating Systems Principles, page 133, 2009.

[12] Deadline IO Scheduler. http:
//en.wikipedia.org/wiki/Deadline_scheduler.

[13] M. Dunn and A. L. N. Reddy. A new I/O scheduler
for solid state devices. Texas A&M University, 2010.

[14] fio. http://freecode.com/projects/fio.

[15] P. Foglia, C. A. Prete, M. Solinas, and F. Panicucci.
Investigating design tradeoffs in S-NUCA based CMP
systems. UCAS, 2009.

[16] Fusion-io ioDrive2. http://www.fusionio.com/.

[17] L. M. Grupp, J. D. David, and S. Swanson. The Bleak
Future of NAND Flash Memory. USENIX Conference
on File and Storage Technologies, 2012.

[18] A. Huffman. NVM Express, Revision 1.0c. Intel
Corporation, 2012.

[19] J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee, and S. H.
Noh. Disk Schedulers for Solid State Drives. In
EMSOFTâĂŹ09: 7th ACM Conf. on Embedded
Software, pages 295–304, 2009.

[20] F. Liu, X. Jiang, and Y. Solihin. Understanding How
Off-Chip Memory Bandwidth Partitioning in Chip
Multiprocessors Affects System Performance. High
Performance Computer Architecture, 2009.

[21] S. Mangold, S. Choi, P. May, O. Klein, G. Hiertz, and
L. Stibor. 802.11e Wireless LAN for Quality of
Service. IEEE, 2012.

[22] J. Nieplocha, R. J. Harrison, and R. J. Littlefield.
Global Arrays: A Non-Uniform-Memory-Access
Programming Model For High-Performance
Computers. The Journal of Supercomputing, 1996.

[23] S. Park and K. Shen. FIOS: A Fair, Efficient Flash
I/O Scheduler. In USENIX Conference on File and
Storage Technologies, 2010.

[24] J. Parkhurst, J. Darringer, and B. Grundmann. From
single core to multi-core: preparing for a new
exponential. In Proceedings of the 2006 IEEE/ACM
international conference on Computer-aided design,
2006.

[25] PCI-SIG. PCI Express Specification Revision 3.0.
Technical report, 2012.

[26] L. Soares and M. Stumm. Flexsc: Flexible system call
scheduling with exception-less system calls. In
Proceedings of the 9th USENIX conference on
Operating systems design and implementation, 2010.

[27] H. Sutter. The free lunch is over: A fundamental turn
toward concurrency in software. Dr. Dobb’s Journal,
30(3):202–210, 2005.

[28] V. Vasudevan, M. Kaminsky, and D. G. Andersen.
Using vector interfaces to deliver millions of iops from
a networked key-value storage server. In Proceedings of
the Third ACM Symposium on Cloud Computing,
2012.

[29] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum.
Operating System Support for Improving Data
Locality on CC-NUMA Compute Servers. In
International Conference on Architectural Support for
Programming Languages and Operating Systems, 1996.

[30] J. Weinberg. Quantifying Locality In The Memory
Access Patterns of HPC Applications. PhD thesis,
2005.

[31] J. Yang, D. B. Minturn, and F. Hady. When Poll is
Better than Interrupt. In USENIX Conference on File
and Storage Technologies, 2012.

