
ADAPTIVE PHYSICS BASED TETRAHEDRAL MESH
GENERATION USING LEVEL SETS

Robert Bridson2 Joseph Teran1 Neil Molino1 Ronald Fedkiw3

1Stanford University, Stanford, CA, U.S.A. {jteran,npmolino}@stanford.edu
2University of British Columbia, Vancouver, BC, Canada rbridson@cs.ubc.ca

3Stanford University, Stanford, CA, U.S.A. fedkiw@cs.stanford.edu

ABSTRACT

We present a tetrahedral mesh generation algorithm designed for the Lagrangian simulation of deformable bodies.

The algorithm’s input is a level set (i.e., a signed distance function on a Cartesian grid or octree). First a bounding

box of the object is covered with a uniform lattice of subdivision-invariant tetrahedra. The level set is then used to

guide a red green adaptive subdivision procedure that is based on both the local curvature and the proximity to the

object boundary. The final topology is carefully chosen so that the connectivity is suitable for large deformation and

the mesh approximates the desired shape. Finally, this candidate mesh is compressed to match the object boundary.

To maintain element quality during this compression phase we relax the positions of the nodes using finite elements,

masses and springs, or an optimization procedure. The resulting mesh is well suited for simulation since it is highly

structured, has topology chosen specifically for large deformations, and is readily refined if required during subsequent

simulation.

We then use this algorithm to generate meshes for the simulation of skeletal muscle from level set representations

of the anatomy. The geometric complexity of biological materials makes it very difficult to generate these models

procedurally and as a result we obtain most if not all data from an actual human subject. Our current method involves

using voxelized data from the Visible Male [1] to create level set representations of muscle and bone geometries. Given

this representation, we use simple level set operations to rebuild and repair errors in the segmented data as well as

to smooth aliasing inherent in the voxelized data.

Keywords: tetrahedral mesh generation, level set methods, BCC lattice, red green refinement hierar-

chy, large deformations, muscle simulation

1. INTRODUCTION

We are particularly interested in simulating highly deformable bodies such as the muscle and fatty tissues commonly

encountered in biomechanics [2, 3], haptics [4], and virtual surgery [5, 6]. The stability, accuracy, and efficiency of

these simulations are all very dependent upon the quality of the tetrahedral mesh, see e.g. [6]. Therefore, our mesh

generation algorithm is designed specifically for such large deformation simulations, and even includes simulation as

a substantial component.

Mesh generation is not only a broad field, but is in some sense many fields, each concerned with the creation of

meshes that conform to quality measures specific to a target application. Fluid flow and heat transfer meshes which

are not deformed at all, or small deformation solids meshes which are barely deformed, impose requirements on the

mesh that can be quite different from those for simulating soft biological tissue that may undergo large deformations.

Fleishman et al. uses simple examples to show that the specific measures of mesh quality vary depending on the

problem being solved [7].

Eulerian fluid flow simulations require anisotropically compressed elements in boundary layers, e.g. [8, 9, 10]. In

these calculations, the solution gradient is typically smaller in the direction of the fluid flow than it is in orthogonal

directions. Obviously, it is desirable to have the density of the elements be larger in directions where the gradient

is large and lower in directions where the gradient is small, i.e. elongated elements. In contrast, however, highly

stretched cells tend to be ill-conditioned when a mesh deforms significantly, as is typical for soft bodies. If the mesh

is softer in the thin direction, then the cells will have a tendency to invert, which can terminate a simulation. In

contrast, if the material is stiffer in the thin direction, then the calculation will be very expensive because explicit

time step restrictions become even more stringent with higher stiffness or with small element cross-section. Thus,

although our method has been designed to provide a high degree of adaptivity both to resolve the geometry and to

guarantee quality simulation results, we neither consider nor desire anisotropically stretched elements. Also, since

highly deformable bodies tend to be devoid of sharp features such as edges and corners, we do not consider boundary

feature preservation.

Our main concern is to generate a mesh that will be robust when subsequently subject to large deformations. For

example, although we obviously want an adaptive mesh with smaller elements in areas where more detail is desired,

it is even more important to have a mesh that can be adapted during the simulation since these regions will change.

Motivated by crystallography, we use a body-centered cubic (BCC) mesh (see e.g. [11]) that is highly structured and

produces similar (in the precise geometric sense) tetrahedra under regular refinement. This allows us to adaptively

refine both while generating the mesh and during the subsequent simulation.

The signed distance function representation of the object’s geometry is useful for many reasons. First, it provides a

natural bounding box for the object, which we tile with a uniform lattice of tetrahedra. Then, it can be used to guide

the creation of an adaptive mesh by providing geometric information anywhere in space. The deletion of elements

that are completely outside the object of interest is facilitated by the O(1) inside/outside testing provided by the

level set. Finally, the compression phase uses the level set value to guide tetrahedron nodes that remain outside the

surface following the discard phase [12]. Nodes that are interior to the surface are treated differently to avoid element

collapse.

We take measures to produce meshes well suited for large deformation simulations. The compression stage of our

algorithm can be carried out using a mass spring system, a finite element constitutive model or an optimization based

approach. One advantage of using a physically based compression algorithm is that it can forecast how the mesh is

likely to respond to the deformations it will experience during simulation. This is in contrast to many traditional

purely geometric techniques that may produce an initial mesh with good quality measures, but also with possible

hidden deficiencies that can be revealed during simulation, leading to poor accuracy or element collapse. We also

specifically avoid pathological connectives which engender mesh defects and collapsing elements.

2. RELATED WORK

While Delaunay techniques have been quite successful in two spatial dimensions, they have not been as successful in

three spatial dimensions (see e.g. [13] for a discussion of implementation details). They admit flat sliver tetrahedra

of negligible volume. Shewchuk provides a nice overview of these methods, including a discussion of why some of

the theoretical results are not reassuring in practice [14]. Moreover, he discusses how the worst slivers can often

be removed. Cheng et al. [15] also discuss sliver removal, but state that their theorem gives an estimate that is

“miserably tiny”. Edelsbrunner and Guoy [16] showed that [15] can be used to remove most of the slivers, but is

not as promising near boundaries. Another problem with Delaunay methods is that the Delaunay tetrahedralization

of a set of points is convex whereas the domains of many finite element calculations are not. Thus, techniques such

as the conforming Delaunay approach which inserts additional vertices into the mesh to force it to conform to the

boundary of the domain must be developed. The constrained Delaunay tetrahedralization is another method used

to enforce boundary recovery [17]. These approaches can be complicated and can even produce an intractably large

mesh which is not polynomial in the complexity of the input domain.

Advancing front methods start with a boundary discretization and march a “front” inward forming new elements

attached to the existing ones [18]. Advancing front techniques conform well to the boundary. This renders them a

useful technique when the specific polygonal boundary representation of the geometry must be matched precisely,

for example, when meshing a machine part. When the input geometry is not a polygonal boundary, a triangulation

of this boundary must first be performed. The quality of this surface triangulation has a large impact on the three

dimensional algorithm’s behavior. Poorly shaped surface triangles will engender ill-shaped tetrahedra [19]. A central

decision in an advancing front algorithm is the placement of an interior point that marches the front further into

the interior of the object. Local element control is possible because new nodes are created at the same time that

new elements are created. The node and element creation is done as needed based on local procedures. Authors

have experimented with various metrics and criteria to evaluate the placement of the new node, see e.g. [20, 21, 22].

Advancing front techniques have difficulty when fronts merge, however, which unfortunately can occur very near the

important boundary in regions of high curvature [9, 10].

Radovitzky and Ortiz [23] started with a face-centered cubic (FCC) lattice defined on an octree and used an advancing

front approach to march inward, constructing a mesh with the predetermined nodes of the FCC lattice. They chose

FCC over BCC because it gives slightly better tetrahedra for their error bounds. However, after any significant

deformation the two meshes will usually have similar character. Moreover, since we keep our BCC connectivity intact

(as opposed to [23]), we retain the ability to further refine our BCC mesh during the calculation to obtain locally

higher resolution for improved accuracy and robustness. On the other hand, their approach is better at resolving

boundary features and is thus likely superior for problems with little to no deformation.

Fuchs [24] begins with a BCC tiling of space which is adaptively refined to obtain the desired nodal density. Vertices

outside the object are simply projected to the boundary, and then smoothing is applied to optimize the position of

the vertices. They emphasize that the BCC connectivity is never used and instead apply Delaunay tessellation. That

is, they only use the adaptive BCC lattice to obtain an initial guess for their vertex positions.

Shimada and Gossard [25] packed spheres (or ellipsoids for anisotropic mesh generation [26, 27]) into the domain

with mutual attraction and repulsion forces, and generated tetrahedra using the sphere centers as sample points via

either a Delaunay or advancing front method. However, ad hoc addition and deletion of spheres is required in a

search for a steady state, and both local minima and “popping” can be problematic. This led Li et al. [28] to propose

the removal of the dynamics from the packing process, instead marching in from the boundary removing spherical

“bites” of volume one at a time. This biting was motivated by the advancing front technique, but used here for sphere

packing rather than mesh generation. The final mesh is computed with a Delaunay algorithm on the sphere centers.

Later, they extended the biting idea to ellipsoids to generate anisotropic meshes [29].

Our compression phase moves the nodes on the boundary of our candidate mesh to the implicit surface, providing

boundary conformity. In some sense, this wrapping of our boundary around the level set is related to snakes [30]

or GDMs [31] which have been used to triangulate isosurfaces, see e.g. [32]. Neugebauer and Klein started with a

marching cubes mesh and moved vertices to the centroid of their neighbors before projecting them onto the zero level

set in the neighboring triangles’ average normal direction [33]. Grosskopf and Neugebauer improved this method

using internodal springs instead of projection to the centroid, incremental projection to the zero isocontour, adaptive

subdivision, edge collapse and edge swapping [34]. Kobbelt et al. used related ideas to wrap a mesh with subdivision

connectivity around an arbitrary one, but had difficulty projecting nodes in one step, emphasizing the need for slower

evolution [35]. To improve robustness, Wood et al. replaced the spring forces with a modified Laplacian smoothing

restricted to the tangential direction [36]. Ohtake and Belyaev advocated moving the triangle centroids to the zero

isocontour instead of the nodes, and matching the triangle normals with the implicit surface normals [37].

Although we derive motivation from this work, we note that our problem is significantly more difficult since these

authors move their mesh in a direction normal to the surface, which is orthogonal to their measure of mesh quality

(shapes of triangles tangent to the surface). When we move our mesh normal to the surface, it directly conflicts with

the quality of the surface tetrahedra. In [38], de Figueiredo et al. evolved a volumetric mass spring system in order

to align it with (but not compress it to) the zero isocontour, but the measure of mesh quality was still perpendicular

to the evolution direction since the goal was to triangulate the zero isocontour. Later, however, Velho et al. did

push in a direction conflicting with mesh quality. They deformed a uniform-resolution Freudenthal lattice to obtain

tetrahedralizations using a mass spring model, but were restricted to simple geometries, mostly due to the inability

to incorporate adaptivity [39].

In two spatial dimensions, Gloth and Vilsmeier also moved the mesh in a direction that opposed the element quality

[40]. They started with a uniform Cartesian grid bisected into triangles, threw out elements that intersected or were

outside the domain, and moved nodes to the boundary in the direction of the gradient of the level set function using

traditional smoothing, edge swapping, insertion and deletion techniques on the mesh as it deformed.

Human modeling is a popular application of meshing algorithms. Researchers in surgical simulation, medical device

design and biomechanics of movement all require detailed models of the human form. Given the complexity of

biological materials, these models are most often obtained from actual subjects via non-invasive scanning technologies

or instead by dissection [41, 42, 43, 44]. However, this data is usually voxelized or pixelized and must be converted into

a more suitable format. In [44] and [41] MRI images were manually labeled to create volumetric muscle meshes for

accurate muscle length and moment arm computations for gait correction surgery diagnosis. [43] used the segmented

Visible Human data set to create volumetric muscle from which they designed simplified muscle models for computing

accurate muscle paths in the upper extremity.

3. THE BCC LATTICE

The first step in our meshing algorithm is to cover a suitable bounding box of the object with a uniform lattice.

To select the particular lattice, we turn our attention to the physical world and use a body-centered cubic (BCC)

tetrahedral lattice. This mesh has numerous desirable properties and is an actual crystal structure ubiquitous in

nature. It appears in substances with vastly different material properties such as lithium, a soft malleable metal,

and iron which is much harder and more rigid, see e.g. [11]. Other spatial tilings are possible. Üngör [45] provides a

number of these including tilings using acute tetrahedra.

The BCC lattice consists of nodes at every point of a Cartesian grid along with the nodes located at the cell centers.

These node locations may be viewed as belonging to two interlaced grids. The set of edges in the BCC lattice

comprises the edges of both of these interlaced grids. Additional edge connections are also made between a node and

its eight nearest neighbors in the other grid. See figure 1 where these connections are depicted in red and the two

interlaced grids are depicted in blue and in green. The BCC lattice is the Delaunay complex of the interlaced grid

nodes, and thus possesses all properties of a Delaunay tetrahedralization. Moreover, all the nodes are isomorphic

to each other (and in particular have uniform valence), every tetrahedron is congruent to the others, and the mesh

is isotropic (so the mesh itself will not erroneously induce any anisotropic bias into a subsequent calculation). The

BCC lattice is structured, which may be exploited in preconditioned iterative solvers, multigrid algorithms, etc. and

may allow reduced computational and memory requirements.

A significant advantage of the BCC mesh is that it is composed entirely of subdivision invariant tetrahedra. Meshes

Figure 1: A portion of the BCC lattice. The blue and the green connections depict the two interlaced
grids, and the eight red connections at each node lace these two grids together.

Figure 2: The standard red refinement (left) produces eight children that reside on a BCC lattice that
is one half the size. We allow three types of green refinement (depicted in green).

based on this lattice are therefore easily refined either initially or during the calculation. Each regular BCC tetrahe-

dron can be refined into eight tetrahedra, shown in red in figure 2, with a one to eight (1:8) refinement. When the

shortest of the three possible choices for the edge internal to the tetrahedron is taken, the newly formed tetrahedra

are exactly the BCC tetrahedra that result from a mesh with cells one half the size. Thus, these eight new tetrahedra

are geometrically similar to the tetrahedra of the parent mesh and element quality is guaranteed under this regular

1:8 refinement. Fuchs demonstrates that the BCC tetrahedron is the subdivision invariant tetrahedron which differs

from an equilateral one as little as possible [24].

4. A RED GREEN HIERARCHY

For many applications, computation time and memory restrictions necessitate adaptivity. In particular, volumetric

simulations do not require and cannot afford a uniformly high resolution mesh. Many material response phenomena

such as contact and fracture show highly concentrated stress patterns, often near high surface curvature, outside of

which larger tetrahedra are acceptable. In addition, many applications such as virtual surgery can tolerate lower

accuracy in the unseen interior of a body. Thus, we require the ability to generate adaptive meshes.

As the BCC lattice is built from a Cartesian grid, a natural approach to adaptivity is to build its analog based on an

octree. We implemented this by adding body centers to the octree leaves, after ensuring the octree was graded with

no adjacent cells differing by more than one level. The resulting BCC lattices at different scales were then patched

together with special case tetrahedra. For more on octrees in mesh generation, see e.g. [46, 47, 23] (none of which

use our multilevel BCC mesh).

However, we found that red green refinement is more economical, simpler to implement, and more flexible, see e.g.

[48, 49, 50]. The general idea of a red green hierarchy is to regularly (red) refine any tetrahedron where more resolution

is required, and then irregularly (green) refine tetrahedra to restore the mesh to a valid simplicial complex. The initial

BCC lattice tetrahedra are labelled red, as are any of their eight children obtained with 1:8 subdivision. Performing a

red refinement on a tetrahedron creates T-junctions at the newly-created edge midpoints where neighboring tetrahedra

are not refined to the same level. One strategy to deal with these T-junctions is to redistribute the forces on them to

the active computational nodes and to enslave their motion [51]. However, we choose the more traditional approach

that eliminates them. The red tetrahedra with T-junctions are irregularly refined into fewer than eight children by

introducing special case children (fewer than eight). These children are labelled green, and are of lower quality than

the red tetrahedra that are part of the BCC mesh. A green tetrahedron is never refined. When higher resolution is

desired in a region occupied by a green tetrahedron, the entire family of green tetrahedra is removed from its red

parent, and the red parent is refined regularly to obtain eight red children that can undergo subsequent refinement.

A red tetrahedron that needs a green refinement can have between one and five midpoints on its edges (in the case

of six we do red refinement and in the case of zero nothing needs to be done). We only allow the green refinements

shown in figure 2. We add extra edge midpoints if necessary to arrive at one of these allowable configurations.

Specifically, we only allow green tetrahedra with one, two, or three edges bisected. In the case of two bisected edges

we require that these two edges are not incident to a common vertex. If they are, we add a third midpoint. Also

in the case of three bisected edges we require the three bisected edges to be on a common face of the tetrahedron.

These restrictions (where all triangles are either bisected or quadrisected) smooth the gradation further and guarantee

higher quality green tetrahedra. While there can be a cascading effect as the extra midpoints may induce more red or

green refinements, it is a small price to pay for the superior mesh quality and seems to be a minor issue in practice.

Any criteria may be used to drive refinement, and we experimented with the geometric rules described in the next

Figure 3: Tetrahedral mesh of a sphere (18K elements). The cutaway view illustrates that the interior
mesh can be fairly coarse even if high resolution is desired on the exterior boundary.

section. A significant advantage of the red green framework is the possibility of refinement during simulation based

on a posteriori error estimates. Note that the lower quality green tetrahedra can be replaced by finer red tetrahedra

which admit further refinement. However, one difficulty we foresee is in discarding portions of green families near

the boundary (see section 6), since part of the red parent may be missing. To further refine this tetrahedron, the

green family must be replaced with its red parent which can be regularly refined, then some of the red children need

to be discarded and the others must be compressed to the boundary (see sections 7–8). A simpler but lower quality

alternative is to arbitrarily relabel those green boundary tetrahedra that are missing siblings as “red”, allowing them

to be directly refined. We plan to address this issue in future work.

5. LEVEL SET GEOMETRY

Medical data such as the National Library of Medicine’s Visible Human data set often comes in volumetric form [1].

Thus, it is natural to devise a mesh generation technique that generates a volumetric mesh from this data. The data is

first converted into a level set using straightforward and efficient algorithms such as a fast marching method [52, 53].

Level sets arise naturally in other applications as well. They are used as a design primitive in CAGD packages. They

are also used as a technique to generate a surface from scattered point data [54]. In this section, we briefly review

some basic properties of level sets and then describe how they are used as inputs to our mesh generation algorithm.

A level set defines the object implicitly with a scalar function φ(x) defined over all of space. Its interior is the set

{x : φ(x) < 0}. Similarly, its exterior is the set {x : φ(x) > 0} and its boundary is {x : φ(x) = 0}. We further require

that φ(x) be a signed distance function, i.e., ‖∇φ‖ = 1. A signed distance function provides access to several useful

geometric primitives. For example, the distance of a point to the closest point on the object boundary is |φ|, and a

unit normal, N , is simply

N =
∇φ

‖∇φ‖ = ∇φ,

where the second of the two equalities comes from ‖∇φ‖ = 1.

In general, φ is not defined analytically, but is discretized on either a uniform Cartesian grid [55] or an octree [56, 57].

In the octree case, we constrain values of fine grid nodes at gradation boundaries to match the coarse grid interpolated

values, see e.g. [58]. Note that this is related to the node enslavement ideas of [51]. If a cell is adjacent to a coarser

level cell, the corresponding φ values are reset to be the value that is interpolated from the values at the coarser level

of the octree. For example, if an edge of a coarser cell has values φa and φb at its endpoints, and this edge has a

node at its midpoint because it also abuts a finer level of the octree, then φ at the midpoint is constrained to the

value φmidpoint = (φa + φb)/2, which ensures a continuous level set function between different gradation levels of the

octree.

When generating a tetrahedron mesh, if the signed distance function has a resolution much higher than that of our

desired mesh, we apply motion by mean curvature to smooth the high frequency features. The mean curvature of a

level set is defined as

κ = ∇ ·N = ∇ · ∇φ

‖∇φ‖ = ∆φ,

where, again, the final equality follows from ‖∇φ‖ = 1. Motion by mean curvature is implemented with a velocity of

Figure 4: Tetrahedral mesh of a torus (8.5K elements). Using the principal curvatures increases the
level of resolution in the inner ring.

V = −bκN (b > 0), i.e. the level set evolution equation is

φt = bκ‖∇φ‖.

After applying motion by mean curvature, φ is no longer a signed distance function, so we reinitialize φ by iterating

the equation

φτ + S(φo)(‖∇φ‖ − 1) = 0,

in fictitious time, τ , until a steady state is reached [55]. Here φo represents the original values of φ at τ = 0 and S(x)

is a smoothed sign function. For our level set preprocessing, we interleave a reinitialization procedure with every few

steps of motion by mean curvature.

For our mesh generation procedure, the level set is used to guide both the refinement phase and the compression

phase of the algorithm. To obtain a finer mesh near the boundary, one simply refines tetrahedra that include portions

of the interface where φ = 0. If a tetrahedron has nodes with positive values of φ and nodes with negative values of φ,

it obviously contains the interface and can be refined. Otherwise, the tetrahedron is guaranteed not to intersect the

interface if the minimum value of |φ| at a node is larger than its longest edge length (tighter estimates are available,

of course). The remaining cases are checked by sampling φ appropriately (at the level set grid size 4x), allowing

refinement if any sample is close enough to the interface (|φ| < 4x). Figure 3 shows a sphere adaptively refined near

its boundary. Note how the interior mesh can still be rather coarse.

One may also wish to adaptively refine in regions of high curvature. Note that the mean curvature, κ = (k1 + k2)/2,

is the average of the principal curvatures, k1 and k2. Although this is the simplest curvature measure to compute, it

is an insufficient measure since it can be small at saddle points where positive and negative curvatures cancel. Instead

we use |k1|+ |k2|. The principal curvatures are computed by forming the Hessian,

H =




φxx φxy φxz

φxy φyy φyz

φxz φyz φzz


 ,

and projecting out the components in the normal direction via the projection matrix P = I − NNT . Then the

eigenvalues of PHP/‖∇φ‖ are computed. The zero eigenvalue is discarded as corresponding to the eigenvector N ,

and the remaining two eigenvalues are k1 and k2, see e.g. [59]. To detect whether a tetrahedron contains regions of

high curvature, we sample at a fine level and check the curvature at each sample point. Figure 4 shows a torus where

the inner ring is refined to higher resolution even though the principal curvatures there differ in sign.

6. SELECTING A CANDIDATE MESH

This section describes how we use the previously discussed BCC lattice, red green hierarchy, and input level set to

generate a candidate mesh for the object that is ready for the final compression phase of the algorithm. Here the

final topology of the mesh is selected. The final stages of the algorithm only adjust the positions of the nodes, not

the connectivity.

To obtain the final topology of the mesh, we first cover an appropriately sized bounding box of the object with

a coarse BCC mesh. Then we use a conservative discard process to remove tetrahedra that are guaranteed to lie

Figure 5: Candidate mesh of the cranium.

completely outside of the zero isocontour: tetrahedra with four positive φ values all larger than the maximum edge

length are removed. Any such tetrahedron is guaranteed to lie completely outside of the object.

In the next step, the remaining tetrahedra are refined according to any user defined criteria, such as indicator variables

or geometric properties. We limit refinement to a user-specified number of levels. We have experimented with using

both the magnitude of φ and various measures of curvature as discussed in the previous section. Using simply the

magnitude of φ produces large tetrahedra deep inside the object and a uniform level of refinement around the surface,

which can be useful since objects interact with each other via surface tetrahedra. A more sophisticated method

uses the surface principal curvatures, better resolving complex geometry and allowing for more robust and efficient

simulation when subject to large deformation. We refine any tetrahedron near the interface if its maximum edge

length is too large compared to a radius of curvature measure,

rabs =
1

|k1|+ |k2| ,

indicating an inability to resolve the local geometry. We refine to a user-specified number of levels, resolving T-

junctions in the red green framework as needed.

From the adaptively refined lattice we select a subset of tetrahedra that closely matches the object. However, there

are specific topological requirements necessary to ensure a valid mesh that behaves well under deformation:

• the boundary must be a manifold

• no tetrahedron may have all four nodes on the boundary

• and no interior edge may connect two boundary nodes.

If the triangle mesh that is the boundary of the tetrahedra is non-manifold, it is impossible for it to match the

boundary of the object which is necessarily manifold. The remaining two conditions ensure the mesh is robust to

subsequent deformations. Boundary forces can readily crush tetrahedra with all nodes on the boundary. Flattening

or indenting the portion of the surface where there is a tetrahedron with all four nodes on the boundary is impossible

without actually crushing or inverting it. Similarly, an interior edge (i.e. one that is not a segment of the boundary

mesh) with both endpoints on the boundary makes it impossible to indent the surface between those two nodes.

Our strategy to satisfy these conditions is to select all the tetrahedra incident on a set of “enveloped” nodes that are

sufficiently interior to the zero isocontour. This guarantees that every tetrahedron is incident on at least one interior

node (thus automatically satisfying the second condition above). Specifically, we envelop the set of nodes where φ < 0

that have all their incident edges at least 25% inside the zero isocontour as determined by linear interpolation of φ

along the edge. This also tends to avoid the bad interior segments and encourage a manifold boundary for reasonably

convex regions, i.e. regions where the geometry is adequately resolved by the nodal samples.

Additional processing is used to guarantee appropriate topology even in regions where the mesh may be under-

resolved. In a first pass, we bisect any remaining interior edge and all edges incident on non-manifold nodes. The

red green procedure is then used to remove all T-junctions. If any refinement is necessary, we recalculate the set

of enveloped nodes and their incident tetrahedra as above. In subsequent passes, any non-manifold node and the

deeper (i.e. smaller φ) end of any interior segment are added to the enveloped set. As an option, we may add any

boundary node with surface degree three to the set of enveloped nodes (if these nodes were to remain, the final

surface mesh would typically contain angles over 120◦). We check that these additions do not create more problems,

continuing to add boundary nodes to the set of enveloped nodes until we have achieved all requirements. Typically

at most two passes are necessary. This quickly and effectively results in a candidate mesh of high quality elements

that approximates the object fairly closely (from the viewpoint of an initial guess for the compression phase of the

algorithm) and that has connectivity well suited for large deformation simulations. See figure 5 for an example

candidate mesh.

7. PHYSICS BASED COMPRESSION

Now that we have a candidate mesh with nicely shaped elements that closely matches the boundary of the object, it

remains to compress the boundary of the tetrahedron mesh to the zero isocontour of the level set. If the mesh boundary

were simply snapped to the boundary of the signed distance function, the element quality would be severely degraded.

To ameliorate this, we adjust the positions of the interior nodes to compensate for the motion of the boundary and

to maintain mesh quality. Here we simulate the object as an elastic body with boundary conditions that drive the

mesh boundary to conform to the level set boundary.

To this end, we outfit our candidate mesh with a deformable model based on either masses and springs or the finite

element method. The two techniques differ in how the external forces are computed, but both have equilibrium

positions that try to maintain high quality tetrahedra.

The compression is driven using either a force or velocity boundary condition on the surface nodes. Applying forces

is more robust as it allows the interior mesh to push back, resisting excessive compression while it seeks an optimal

state. However, if the internal resistance of the mesh becomes larger than the boundary forces, the boundary will

not be matched exactly. Thus, instead of adjusting forces, we switch from force to velocity boundary conditions after

an initial stage that carries out most of the needed compression.

At each boundary vertex, we choose the direction of the force or constrained velocity component as the average of

the incident triangles’ normals. No force (or velocity constraint) is applied in other directions so the mesh is free to

adjust itself tangentially. The magnitude of the force or velocity constraint is proportional to the signed distance from

the level set boundary. Specifically, the magnitude is scaled by φ, so the further the node is from the zero isocontour,

the harder it is driven towards it. Also, the direction switches as the zero set is crossed because φ is negative inside

and positive outside. Using the mesh normal rather than the implicit surface normal is important because it actually

tends to smooth out jagged parts of the candidate mesh, whereas ∇φ may cause the elements to fold over themselves.

Both physics based compression techniques calculate a set of forces that are applied to the nodes. Then, Newton’s

second law F = ma, must be integrated forward in time. This is done using a slightly-modified version of the central

Newmark scheme (see e.g., [60, 61]). The elastic forces (those that do not depend on velocity) are treated explicitly,

whereas the damping (velocity-dependent) forces are treated implicitly. Let x represent the node positions, v their

velocities, and a their accelerations. Then, the time-stepping proceeds as follows:

• vn+1/2 = vn + 4t
2

a(tn, xn, vn+1/2) (implicit update)

• Modify vn+1/2 in place to limit strain, strain rate, etc. as described below

• xn+1 = xn +4tvn+1/2 (explicit update)

• vn+1 = vn + 4t
2

(a(tn, xn, vn) + a(tn+1, xn+1, vn+1)) (implicit update)

• Modify vn+1 in place to limit strain, strain rate, etc. as described below.

This time-stepping scheme is basically a second order accurate leap frog scheme on position combined with a second

order accurate trapezoidal rule for velocity. It is stable for 4t < O(4x
√

ρ/ke), where ρ is the material density and

ke is the material stiffness. In particular, it circumvents stringent quadratic, i.e. O(4x2), time step restrictions based

on the damping forces. Moreover, since all our damping forces are linear and symmetric negative semi-definite, we

can use a conjugate gradient solver for the implicit step.

The reason for the first implicit time step on velocity is that using an explicitly-half-stepped velocity for the position

update may not be monotone, even though it is stable. This may introduce spurious oscillations in calculations which

are mollified by using the implicit velocity at time tn+1/2 for the position update instead. For more details see [61].

In the second and fifth steps of the integration algorithm, we use a velocity modification procedure to artificially limit

the maximum strain of a tetrahedral altitude to 50%, and to artificially limit the strain rate of a tetrahedral altitude

to 10% per time step [62]. Since altitudes do not connect two mesh nodes together, all of these operations are carried

out by constructing a virtual node at the intersection point between an altitude and the plane containing the base

triangle. The velocity of this point is calculated using the barycentric coordinates and velocities of the triangle, and

the mass is the sum of the triangle’s nodal masses. The resulting impulses on this virtual node are then redistributed

to the triangle nodes, conserving momentum.

The time step restriction imposed for stability is less restrictive for meshing as material parameters can be taken to

be considerably softer than during most practical deformable object simulations.

7.1 Mass Spring Models

The use of springs to aid in mesh generation dates back at least to Gnoffo, who used them to move nodes for two

dimensional fluid dynamics calculations [63, 64]. Löhner et al. solved the compressible Euler equations using variable

spring stiffnesses to distribute the error evenly over the solution domain [65]. Later, [66] used variational principles

analogous to the energy of a system of springs to achieve the same goal. Other authors also measured the error of a

CFD calculation along edges of a mesh and then used a spring network to equidistribute these errors over the edges

[67, 68, 69]. Bossen and Heckbert point out that inter-nodal forces that both attract and repel (like springs with

nonzero rest lengths) are superior to Laplacian smoothing where the nodes only attract each other [70]. Thus, we

use nonzero rest lengths in our springs, i.e. simulating the mesh as if it were a real material. All edges are assigned

linear springs obeying Hooke’s law, and the nodal masses are calculated by summing one quarter of the mass of each

incident tetrahedron.

Edge springs are not sufficient to prevent element collapse. As a tetrahedron gets flatter, the edge springs provide

even less resistance to collapse. Various methods to prevent this have been introduced, e.g. [71] proposed a pseudo-

pressure term, [72] used an elastic (only, i.e. no damping) force emanating from the barycenter of the tetrahedron.

[73] showed that these barycentric springs do not prevent collapse as effectively as altitude springs.

In our model, every tetrahedron has four altitude springs, each attaching a tetrahedron node to a fictitious node

on the plane of its opposite face. Then, the elastic and damping forces are calculated just as for a normal spring.

Suppose that for a given tetrahedron, xi and vi for i = 1, 2, 3, 4, represent the positions and velocities of the four

nodes. Consider the altitude from the fourth node as the apex of the tetrahedron. Let n̂ be a unit normal to the

face determined by x1, x2, x3. Also, let w1, w2, w3 be the barycentric coordinates of xint, the projection of x4 onto

the plane determined by x1, x2, x3. In particular,

xint = (I − n̂n̂T)x4 = w1x1 + w2x2 + w3x3.

Similarly, we have vint = w1v1 + w2v2 + w3v3. Then, the elastic force due to this altitude spring is

f (e) =
ke

lo
(‖x4 − xint‖ − lo)n̂

and the damping force is

f (d) =
kd

lo
n̂n̂T (v4 − vint),

where lo is the restlength of the altitude, ke is the material stiffness and kd is the material damping parameter.

These forces must then be distributed among the tetrahedron nodes. This is done according to the barycentric weights

of the fictitious node. The elastic forces are f
(e)
i = wif

(e) for i = 1, 2, 3 and f
(e)
4 = −f (e), and the damping forces are

similarly redistributed f
(d)
i = wif

(d) for i = 1, 2, 3 and f
(d)
4 = −f (d). Note that an analysis similar to that carried

out in [61] reveals that, up to scaling, any other forces used (i.e. apart from the normal direction with barycentric

weights) must either violate conservation of linear and angular momentum, or must act to deform the base triangle.

This model has damping forces that are linear in the nodal velocities,




f
(d)
1

f
(d)
2

f
(d)
3

f
(d)
4


 =

−kd

lo




w1n̂

w2n̂

w3n̂

−n̂







w1n̂

w2n̂

w3n̂

−n̂




T 


v1

v2

v3

v4


 .

Moreover, because the damping matrix is a scaled outer product matrix, the damping forces are symmetric and

negative semi-definite in the nodal velocities. This allows the damping terms to be integrated using a fast conjugate

gradient (CG) solver for implicit integration. For additional efficiency, we compute and cache the position-dependent

components of the damping forces that are constant throughout the CG iterations. Optional accelerations for altitude

springs include the ability to use only the shortest altitude spring in a given tetrahedron or the ability to only use

altitude springs that are compressed beyond a threshold of their rest lengths. Note that these acceleration structures

may also be computed and cached before the CG iterations.

When simulating a deformable object with a mass spring network, the material behavior should be independent of

mesh refinement. The frequency of a spring scales as
√

ke/mlo (note our “spring constant” is ke/lo), so the sound

speed scales as lo
√

ke/mlo =
√

kelo/m. Requiring the sound speed to be a material property implies that ke must

scale as m/lo. Thus, we set the spring stiffness for an edge spring using the harmonic average of the masses of the

two nodes at the ends of the spring and its restlength. Similarly, for altitude springs we use the harmonic average of

the nodal mass and the triangle mass.

7.2 Finite Element Method

Another physics based technique for this compression phase is to discretize the equations of continuum mechanics

with the finite element method. The equations of elasticity are a more natural and more flexible way of encoding

a materials response to distortion. In discretized finite element form, they resist the three-dimensional distortion of

elements. A big advantage of finite element techniques over mass spring networks is the versatility provided by the

framework. Finite elements allow for an arbitrary constitutive model. In this section we describe the use of finite

elements during this compression phase of our algorithm as well as discuss the constitutive model implied by the

altitude springs described in the previous section.

While any number of constitutive models could be used, an interesting strategy is to use the real constitutive model

of the material when generating its mesh. In this sense, one might hope to predict how well the mesh will react to

subsequent deformation during simulation, and possibly work to ensure simulation robustness while constructing the

mesh.

The simplest example of a hyperelastic material is the St. Venant-Kirchhoff model, or linear elasticity. For this, we

use the nonlinear Green strain tensor to measure the deformation of the object. Let F = ∂x/∂u be the deformation

gradient where x(u) represents a point’s position in world coordinates as a function of its coordinates in material

coordinates. Then, the Green Strain is defined via G = 1/2(F T F − I). Isotropic, linearly-elastic materials have a

stress strain relationship of the form

Se = λtr(G)I + 2µG

where λ and µ are the Lamé coefficients. Damping stress is modeled similarly with Sd = αtr(ν)I + 2βν, where

ν = ∂G/∂t is the strain rate. The total second Piola-Kirchhoff stress tensor is then S = Se + Sd.

Although simple, St. Venant-Kirchhoff elasticity is not very practical outside of the small strain regime [74]. We

have found that a more robust constitutive model for large deformation simulations is the one for neo-Hookean

materials. For this constitutive model, it is more natural to use the left Cauchy-Green tensor b = FF T to measure

the deformation. For neo-Hookean materials, the Cauchy stress is

σ =
µ

J
(b− I) +

λ ln J

J
I,

where J = det F is the relative volume change (i.e. it is the ratio between the volume of the deformed tetrahedron

to the volume of the undeformed tetrahedron). This constitutive model increases the resistance to deformation as an

element undergoes an excessive change in volume.

The neo-Hookean hydrostatic pressure term (λ ln J
J

I) has little effect on deformations that distort an element’s quality

(i.e aspect ratio, min and max dihedral angles) while causing minimal change in volume. Altitude springs work more

efficiently to preserve an element’s quality. The finite volume formulation of [75] allows us to interpret the forces

created by altitude springs as an equivalent internal stress of the form

σ =

4∑
i=1

3fi

Ai
nin

T
i ,

where Ai are the areas of the faces of a given element, ni are unit vectors in the directions of the tetrahedron altitudes

and fi are the magnitudes of the altitude spring forces (see appendix A). This is a more attractive response to element

deformation than the neo-Hookean hydrostatic pressure because the stress works to retain mesh quality by preserving

shape rather than volume.

To discretize these constitutive models, we use finite elements with linear basis functions in each tetrahedron. The

displacement of material is a linear function of the tetrahedron’s four nodes. From the nodal locations and velocities

we obtain the Jacobian of this linear mapping, F , and its derivative, Ḟ , and use them to compute the strain and

the strain rate, which in turn are used to compute the stress tensor. Finally, because the stress tensor encodes the

force distribution inside the material, we can use it to calculate the force on the nodes. See [75] for the specific finite

volume formulation that we use.

8. OPTIMIZATION BASED COMPRESSION

As an alternative to—or as an additional step before or after—physical simulation, one can directly optimize mesh

quality metrics such as aspect ratios. This does not provide the same feedback on potential problems for subsequent

simulation, but can give better quality measures since they are directly pursued with each movement of a node.

Coupled with our robust connectivity (see section 6), this produces excellent results. Freitag and Ollivier-Gooch [76]

demonstrated that optimizing node positions in a smoothing sweep, i.e. placing one node at a time at a location that

maximizes the quality of incident elements, is superior to Laplacian smoothing in three spatial dimensions. We com-

bine this optimization sweeping with boundary constraints by first moving boundary nodes in the incident triangles’

average normal direction by an amount proportional to the local signed distance value. Then the optimization is

constrained to only move boundary nodes in the tangential direction.

It is important to move boundary nodes gradually over several sweeps just as with physical simulation, since otherwise

the optimization tends to gets stuck in local extrema. This could be overcome with more global optimization

techniques than our simple node-by-node greedy sweep, but it appears to be simpler, more robust, and faster to

simply use several (roughly ten) greedy sweeps to match the boundary. We also found it helpful to order the nodes

in the sweep with the boundary nodes first, their interior neighbors next, and so on into the interior (this ordering

is determined by a simple breadth-first search from the boundary nodes). Then we sweep in the reverse order and

repeat. This efficiently transfers information from the boundary compression to the rest of the mesh. Typically, we

do five sweeps that begin by moving the boundary nodes 1/3 of the signed distance in the mesh normal direction,

Figure 6: Tetrahedral mesh (left) and cutaway view (right) of a cranium (80K elements).

then finish off with five to ten sweeps where boundary nodes are moved the full signed distance to ensure a tight

boundary fit. To speed up the sweeps, we do not bother moving nodes that are incident on tetrahedra of sufficiently

high quality relative to the worst tetrahedron currently in the mesh. In the initial sweeps we end up only optimizing

roughly 10% of the nodes, and in the final sweeps we optimize 30%-50% of the nodes.

While more efficient gradient methods may be used for the nodal optimization, we found a simple pattern search (see

e.g. [77]) to be attractive for its robustness, simplicity of implementation, and flexibility in easily accommodating any

quality metric including non-smooth max/min metrics. For interior nodes we used seven well spread-out directions

in the pattern search. We implemented the normal direction constraint on boundary nodes simply by choosing

five equally spaced pattern directions orthogonal to the average mesh normal at the node, thus not allowing the

optimization to consider nodal positions outside of the tangent plane. The initial step size of the pattern search was

.05 times the minimum distance to the opposite triangle in any tetrahedron incident on the node (to avoid wasting

time on steps that crush elements). After four “strikes” (searches at a given step size that yielded no improvement in

quality, causing the step size to be halved) we move to the next node. For interior nodes we use as a quality metric

the minimum of
a

L
+

1

4
cos(θM)

over the incident tetrahedra, where a is the minimum altitude length, L is the maximum edge length, and θM is the

maximum angle between face normals. For surface nodes we add to this an additional measure of the quality of the

incident boundary triangles, the minimum of
at

Lt
+

1

ψM

where at is the minimum triangle altitude, Lt is the maximum triangle edge, and ψM is the maximum triangle angle.

We found that including the extra terms beyond the tetrahedron aspect ratios helped guide the optimization out of

local minima and actually resulted in better aspect ratios. We have not performed a detailed study of which metrics

perform better, and thus expect the optimization results could be improved in general and especially for particular

applications where a specific metric is important (e.g. geometry factors arising from finite element error analysis).

9. DISCUSSION

We demonstrate several examples of tetrahedral meshes that were generated with our algorithm. The results for all

three compression techniques are comparable, with the FEM simulations taking slightly longer (ranging from a few

minutes to a few hours on the largest meshes) than the mass spring methods, but produce a slightly higher quality

mesh. For example, the maximum aspect ratio of a tetrahedron in the cranium generated with finite elements is

6.5, whereas the same mesh has a maximum aspect ratio of 6.6 when the final compression is done using a mass

spring model. Mass spring networks have a long tradition in mesh generation, but a finite element approach offers

greater flexibility and robustness that we anticipate will allow better three-dimensional mesh generation in the future.

Currently the fastest method is the optimization based compression, roughly faster by a factor of ten.

We track a number of quality measures including the maximum aspect ratio (defined as the tetrahedron’s maximum

edge length divided by its minimum altitude), minimum dihedral angle, and maximum dihedral angle during the

compression phase. The maximum aspect ratios of our candidate mesh start at about 3.5 regardless of the degree

Figure 7: Tetrahedral mesh and cutaway view of a model Dragon (500K elements) and Buddha (800K
elements).

of adaptivity, emphasizing the desirability of our combined red green adaptive BCC approach. This number comes

from the green tetrahedra (the red tetrahedra have aspect ratios of
√

2). In the more complicated models, the worst

aspect ratio in the mesh tends to increase to around 6–8 for the physics based compression methods and to around

5–6 for the optimization based compression.

For the cranium model, the physics based compression methods gave a maximum aspect ratio of 6.5 and average

aspect ratio of 2.1, with dihedral angles bounded between 17◦ and 147◦. The dragon mesh has a maximum aspect

ratio of 7.6 and an average aspect ratio of 2.2, with dihedral angles bounded between 13◦ and 154◦. The buddha

model was more challenging, giving a worst aspect ratio of 8.1 and average of 2.3, and dihedral angles between 13◦

and 156◦. Using optimization on the same examples yielded better results, listed in table 1, where we have also listed

a measure of adaptivity, the ratio of the longest edge in the mesh to the shortest. The aspect ratios all drop below

6, i.e. less than twice the initial values.

Example Cranium Dragon Buddha
max aspect ratio 4.5 5.3 5.9
avg aspect ratio 2.3 2.3 2.3
min dihedral 18◦ 16◦ 16◦

max dihedral 145◦ 150◦ 150◦

max/min edge 94 94 100

Table 1: Quality measures for the optimization example meshes. The aspect ratio is defined as the
longest edge over the shortest altitude. The max/min edge length ratio indicates the degree of
adaptivity.

Of course, these results are dependent on the types and strengths of springs, the constitutive model used in the FEM,

and the quality measures used in the optimization based technique. It is easier to achieve good quality with the

optimization technique since one simply optimizes based on the desired measure, as opposed to the physics based

techniques where one has to choose parameters that indirectly lead to a quality mesh. However, we stress that the

measure of mesh quality is the measure of the worst element at any point of dynamic simulation. It does little good

to have a perfect mesh that collapses immediately when the simulation begins. For meshes that undergo little to no

deformation (fluid flow, heat flow, small strain, etc.) this quality measure is either identical to or very close to that

of the initial mesh. However, for large deformation problems this is not the case, and the physics based compression

techniques hold promise in the sense that the resulting mesh may be better conditioned for simulation. We believe an

interesting possibility for the future would be to consider hybrid approaches that use the physics based compression

Figure 8: The figure on the left depicts a posterior (from behind) view of the upper arm and shows
contraction of the triceps muscle and the partially occluded biceps muscle from passive (left) to full
activation (right). The figure on the right demonstrates muscle contraction with underlying skeletal
motion.

algorithms to guide an optimization procedure to avoid local minima.

10. EXAMPLE: MUSCLE SIMULATION

Musculoskeletal simulation is an active research area in biomechanics of movement, biomedical device design, surgery

simulation and computer graphics. We demonstrate the robustness of our meshing algorithm by simulating volumetric,

deformable skeletal muscle. Our meshing algorithm allows us to create high resolution muscle, tendon and bone

geometries from the Visible Human data set [1]. The data for these biological materials are originally voxelized

in the form of a segmented series of consecutive images that can be used to create a level set description of each

tissue geometry. The level set representation of tissue and bone geometry is particularly useful for correcting many

problems inherent in the data. The voxelized data is considerably aliased, but this can be repaired with a few time

steps of motion by mean curvature in most cases. Also, level sets are very well suited for constructive solid geometry

operations. Much of the segmented data that we have is incomplete due to the difficulty of the segmentation process.

However, using basic geometric primitives we have been able to rebuild parts of tissues with CSG using anatomical

texts as a reference. Once a satisfactory implicit representation has been obtained, it can then be used with either

the dynamic or optimization based algorithm. Figure 9 shows adaptive resolution muscles, tendons and bones in the

upper extremity that were created using dynamic meshing with a finite element constitutive model. The bones are

modeled as rigid bodies and were created using the extension of our algorithm to surfaces (see section 11).

Before any muscle simulation can be performed, a kinematic structure for the skeleton must be developed to set

boundary conditions at the tendonous muscle attachments. The joints in the shoulder girdle are particularly intricate

and involve a complex coupling of degrees of freedom through the glenohumeral and acromioclavicular joints. Our

meshing algorithm allows us to create models of the bones that resolve sub-millimeter anatomical detail. This

resolution allows us to make use of landmarks on the bone geometries that can be used to set up local coordinate

frames as was done in [42].

We simulate both contraction of the right biceps and triceps with a state-of-the-art biomechanical model for hyper-

elastic material response, neurological activation level and fiber anatomy. Muscle is a fibrous structure composed

of fasicles embedded in a matrix of isotropic material [78], and we use a nonlinear transversely-isotropic quasi-

incompressible constitutive model [79, 80, 75] to represent this structure during simulation. The hyperelastic strain

energy associated with this model is a sum of three terms: the first term represents the incompressibility of bio-

logical tissues and penalizes volume change; the second term represents the embedding matrix; and the third term

is the transversely-isotropic component that models muscle fiber contraction and is based on the standard muscle

Figure 9: Adaptive resolution meshes of muscles in the arm.

force/length curve [81]. This model can be used in both muscle and tendon, however, tendon tends to be as much

as an order of magnitude stiffer and muscle has an additional contractile force added to the fiber component that

depends on the muscle activation level.

In addition to activation level, muscle (and tendon) models need information about the local fiber direction. Muscle

fiber arrangements vary in complexity from being relatively parallel and uniform to exhibiting several distinct regions

of fiber directions. We use a B-spline solid as in [82, 83] to represent more intricate muscle fiber architectures and to

assign a fiber direction to individual tetrahedra in the mesh. During both isometric and isotonic contraction, muscles

are given a varying activation level throughout the simulation. The activation levels are computed from key-frames of

the skeletal animation, using an established biomechanics analysis known as muscle force distribution [84] to compute

activations of redundant sets of muscles. These computations are performed using a simplified muscle model (see

figure 10) that treats muscle as a piecewise linear band that wraps around various geometric primitives representing

muscle/muscle and muscle/bone collision.

Figure 8 shows sample frames from our musculo-skeletal simulations. The images on the left depict relaxed and active

muscle during isometric contraction. In this simulation the activation level in the two muscles increases from 0 (fully

relaxed) to 1 (fully activated) and back to 0 over the span of two seconds. The bulging in the bellies of the muscles

results from larger stiffness in the tendons. The rightmost images in figure 8 show several frames of musculo-skeletal

motion. The motion of the kinematic skeleton was key-framed (although our framework allows for motion data

Figure 10: Inverse kinematics muscles.

Figure 11: Muscles of the upper limb.

from other sources such as motion capture). At each key-frame in the animation, an inverse dynamics analysis was

computed for the biceps and triceps activation levels required to maintain the static pose. These activation levels

were then interpolated in time and used for the dynamic muscle simulation.

Figure 12 shows the relative change in maximum aspect ratio observed during an isometric contraction of the biceps

for meshes created using the optimization algorithm and using the dynamics algorithm. Similar results were observed

for the triceps and during isotonic contraction. These results suggest that initial mesh quality may be misleading and

not sufficient to guarantee performance of a mesh throughout simulation. In all of our comparisons, the optimization

based meshes were of higher quality initially, but tended to undergo as much as a 70% change in maximum aspect

ratio during muscle contraction, whereas the dynamics based meshes tended to degrade by only 25%. Of course,

if the initial optimization mesh is of significantly higher quality then the overall maximum aspect ratio will still be

lower. We are not yet claiming that a particular method is better, but simply pointing out that the initial mesh

quality is not always a reliable predictor of performance during subsequent simulation.

Relative Change in Maximum Aspect Ratio

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 11 21 31 41 51 61

Frame

Optimization Mesh

Dynamics Mesh

Figure 12: Plot of changes in maximum aspect ratios during simulation of isometric contraction for
dynamics and optimization based meshes.

Figure 13: Our method is easily extended to create a triangle mesh of a manifold with boundary. The
peeled away regions of the dragon were modeled with a second level set.

11. SURFACE MESHING

The general theme of our algorithm is applicable in any dimension and on general manifolds. First, we tile ambient

space as regularly as possible, then we select a subset of elements that are nicely connected and roughly conform

to the object, and finally we deform them to match the boundary. Figure 13 shows the result of triangulating a

two-dimensional manifold with boundary. We began with a surface mesh of the dragon actually created as the

boundary of a tetrahedral mesh from our method with additional subdivision, edge-swapping, and nodal smoothing.

See [40] for example. We found that this simple technique avoids topological difficulties that may be encountered in

simpler level set surface triangulation algorithms. We further interactively specified a “trimming” level set indicating

areas of the surface to trim away, using a sculpting tool described in [85]. We discarded a subset of the surface

triangles inside the trimming level set using the same topological considerations that are used in selecting candidate

volumetric tetrahedral meshes. This candidate surface mesh was then driven to the trimming boundary using physics

based compression with masses and springs. At every time step of the compression, the mesh nodes were projected

back onto the surface of the dragon to ensure a good match to the geometry. This technique is useful because high

quality two-dimensional surface meshes are important for well-conditioned thin shell simulations of objects such as

fascias, membranes, skin, and cloth.

12. CONCLUSIONS

We presented an algorithm for producing a high quality tetrahedral mesh directly from a level set. The focus of

this algorithm is the generation of a tetrahedral mesh designed specifically for large deformation. Key points of

our algorithm that make it particularly well suited for large deformation are: the use of a red green strategy in

conjunction with a BCC lattice, making the usually temperamental red green approach robust and suitable for

subsequent simulation (and enhancing multiresolution capabilities); the identification and avoidance of connectivity

that is problematic for large deformations in constructing the mesh; and the use of simulation and constitutive

models to generate the mesh, thus identifying potential weaknesses before simulation even begins (in fact this is what

originally led us to the problematic connectivity).

Also, we developed a way to augment the use of masses and springs in mesh generation with altitude springs to

prevent elements from collapsing. This formulation results in damping forces which are linear in the nodal velocities.

Moreover, the damping matrix is symmetric negative semi-definite, which allows an efficient conjugate gradient solver

to be used for implicit time integration.

Finally, we demonstrated the strength or our algorithm by simulating deformable volumetric skeletal muscle and

its interaction with an underlying skeleton. We created level set representations of soft tissues and bones from

the segmented Visible Human data set. The deformable tissues were constructed using the tetrahedron meshing

algorithms and the rigid bones were done using the extension of the algorithm to surfaces. The initial implicit

representation of the anatomical structures allowed us to make use of standard level set procedures to smooth out

inherent aliasing as well as to perform basic constructive solid geometry procedures to repair errors in the segmented

data.

13. ACKNOWLEDGEMENTS

Research supported in part by an ONR YIP award and PECASE award (ONR N00014-01-1-0620), a Packard Foun-

dation Fellowship, a Sloan Research Fellowship, ONR N00014-03-1-0071, ONR N00014-02-1-0720, ARO DAAD19-

03-1-0331, NSF ITR-0121288, NSF ACI-0205671, NSF DMS-0106694, NSF ACI-0323866 and NSF IIS-0326388. In

addition, N. M. and R. B. were supported in part by a Stanford Graduate Fellowships, and J. T. was supported in

part by an NSF Graduate Research Fellowship.

A. APPENDIX

Consider the tetrahedron defined by the points x1, x2, x3, x4 and the altitude spring from x4 to the triangle x1, x2, x3.

The Cauchy stress in the tetrahedron due to this spring is

σalt =
3f

A4
n4n

T
4 ,

where f is the scalar force in an altitude spring (see section 6), A4 is the area of the triangle x1, x2, x3 and n4 is the

outward pointing normal of the tetrahedron on face x1, x2, x3.

This can be shown by considering the results of [75]. A finite volume interpretation of the constant strain tetrahedron

finite element forces shows that the nodal force response to an internal Cauchy stress σ can be written as

fi = σ
(

Ajnj + Aknk + Alnl

3

)
.

Using this result, the force on x4 due to σalt is

f4 = fn4

(
A1n

T
4 n1

A4
+

A2n
T
4 n2

A4
+

A3n
T
4 n3

A4

)
.

A simple geometric argument shows that −(A1n
T
4 n1)/A4 is the ratio of the projected area of the face x2, x3, x4 on

the plane through x1, x2, x3 with A4. This is the barycentric weight of x4 in the plane x1, x2, x3 on the point x1.

Defining the barycentric weight as w1, we can similarly derive

A2n
T
4 n2

A4
= −w2,

A3n
T
4 n3

A4
= −w3.

Therefore, the force on x4 is

f4 = fn4(−w1 − w2 − w3) = −fn4.

Similarly,

f1 = fn4

(
A2n

T
4 n2

A4
+

A3n
T
4 n3

A4
+

A4n
T
4 n4

A4

)
= fn4(1− w2 − w3) = fn4w1

f2 = fn4

(
A1n

T
4 n1

A4
+

A3n
T
4 n3

A4
+

A4n
T
4 n4

A4

)
= fn4(1− w1 − w3) = fn4w2

f3 = fn4

(
A1n

T
4 n1

A4
+

A2n
T
4 n2

A4
+

A4n
T
4 n4

A4

)
= fn4(1− w1 − w2) = fn4w3,

which are precisely the altitude spring forces.

References
[1] U.S. National Library of Medicine. “The Visible Human Project.”, 1994. Http://www.nlm.nih.gov/research/visible/

[2] Martins J., Pires E., Salvado R., Dinis P. “A Numerical Model of Passive and Active Behavior of Skeletal Muscles.” Comput.
Meth. in Appl. Mech. and Eng., vol. 151, 419–433, 1998

[3] Hirota G., Fisher S., State A., Lee C., Fuchs H. “An Implicit Finite Element Method for Elastic Solids in Contact.” Comput.
Anim. 2001

[4] Cotin S., Delingette H., Ayache N. “Real-Time Volumetric Deformable Models for Surgery Simulation.” Proc. of Vis. in Biomed.
Comput., pp. 535–540. 1996

[5] Ganovelli F., Cignoni P., Montani C., Scopigno R. “A multiresolution model for soft objects supporting interactive cuts and
lacerations.” Eurographics, pp. 271–282. 2000

[6] Bro-Nielsen M., Cotin S. “Real-time Volumetric Deformable Models for Surgery Simulation using Finite Elements and Conden-
sation.” Comput. Graph. Forum, vol. 15, no. 3, 57–66, August 1996

[7] Fleishmann P., Kosik R., Selberherr S. “Simple Mesh Examples to Illustrate Specific Finite Element Mesh Requirements.” 8th
Int. Meshing Roundtable, pp. 241–246. 1999

[8] Marcum D.L. “Generation of Unstructured Grids for Viscous Flow Applications.” AIAA. 1995

[9] Garimella R., Shephard M. “Boundary Layer Meshing for Viscous Flows in Complex Domains.” 7th Int. Meshing Roundtable,
pp. 107–118. 1998

[10] Lohner R., Cebral J. “Generation of Non-Isotropic Unstructured Grids via Directional Enrichment.” 2nd Symp. on Trends in
Unstructured Mesh Generation. 1999

[11] Burns G., Glazer A.M. Space Groups for Solid State Scientists. Academic Press, Inc., 1990. (2nd ed.)

[12] Osher S., Sethian J. “Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations.”
J. Comp. Phys., vol. 79, 12–49, 1988

[13] Weatherill N.P., Hassan O. “Efficient Three-Dimensional Delaunay Triangulation with Automatic Point Creation and Imposed
Boundary Constraints.” Int. J. for Num. Meth. in Eng., vol. 37, 2005–2039, 1994

[14] Shewchuk J. “Tetrahedral Mesh Generation by Delaunay Refinement.” Proc. 14th Annual Symp. on Comput. Geom., pp. 86–95.
1998

[15] Cheng S.W., Dey T.K., Edelsbrunner H., Facello M.A., Teng S.H. “Sliver Exudation.” J. of the ACM, vol. 47, no. 5, 883–904,
2000

[16] Edelsbrunner H., Guoy D. “An Experimental Study of Sliver Exudation.” Eng. Comput., vol. 18, no. 3, 229–240, 2002

[17] Shewchuk J. “Constrained Delaunay Tetrahedralizations and Provably Good Boundary Recovery.” 11th Int. Meshing Roundtable.
2002

[18] Schöberl J. “NETGEN - An Advancing Front 2D/3D Mesh Generator Based on Abstract Rules.” Comput. and Vis. in Science,
vol. 1, 41–52, 1997

[19] Möller P., Hansbo P. “On Advancing Front Mesh Generation in Three Dimensions.” Int. J. for Num. Meth. in Eng., vol. 38,
3551–3569, 1995

[20] Lo S.H. “Volume Discretization into Tetrahedra - I., Verification and Orientation of Boundary Surfaces.” Comput. and Structures,
vol. 39, no. 5, 493–500, 1991

[21] Lo S.H. “Volume Discretization into Tetrahedra - II., 3D Triangulation by Advancing Front Approach.” Comput. and Structures,
vol. 39, no. 5, 501–511, 1991

[22] Mavriplis D.J. “An Advancing Front Delaunay Triangulation Algorithm Designed for Robustness.” J. Comp. Phys., vol. 117,
90–101, 1995

[23] Radovitzky R.A., Ortiz M. “Tetrahedral Mesh Generation Based in Node Insertion in Crystal Lattice Arrangements and
Advancing-Front Delaunay Triangulation.” Comput. Meth. in Appl. Mech. and Eng., vol. 187, 543–569, 2000

[24] Fuchs A. “Automatic Grid Generation with Almost Regular Delaunay Tetrahedra.” 7th Int. Meshing Roundtable, pp. 133–148.
1998

[25] Shimada K., Gossard D. “Bubble Mesh: Automated Triangular Meshing of Non-Manifold Geometry by Sphere Packing.” ACM
3rd Symp. on Solid Model. and Appl., pp. 409–419. 1995

[26] Yamakawa S., Shimada K. “High Quality Anisotropic Tetrahedral Mesh Generation via Packing Ellipsoidal Bubbles.” 9th Int.
Meshing Roundtable, pp. 263–273. 2000

[27] Yamakawa S., Shimada K. “Anisotropic Tetrahedral Meshing via Bubble Packing and Advancing Front.” Int. J. for Num. Meth.
in Eng., vol. 57, 1923–1942, 2003

[28] Li X., Teng S., Üngör A. “Biting Spheres in 3D.” 8th Int. Meshing Roundtable, pp. 85–95. 1999

[29] Li X., Teng S., Üngör A. “Biting Ellipses to Generate Anisotropic Mesh.” 8th Int. Meshing Roundtable, pp. 97–108. 1999

[30] Kass M., Witkin A., Terzopoulos D. “Snakes: Active Contour Models.” Int. J. of Comput. Vis., pp. 321–331. 1987

[31] Miller J., Breen D., Lorensen W., O’Bara R., Wozny M. “Geometrically Deformed Models: A Method for Extracting Closed
Geometric Models from Volume Data.” Comput. Graph. (SIGGRAPH Proc.), pp. 217–226, 1991

[32] Sadarjoen I.A., Post F.H. “Deformable Surface Techniques for Field Visualization.” Eurographics, pp. 109–116. 1997

[33] Neugebauer P., Klein K. “Adaptive Triangulation of Objects Reconstructed from Multiple Range Images.” Vis. 1997

[34] Grosskopf S., Neugebauer P.J. “Fitting Geometrical Deformable Models to Registered Range Images.” European Wrkshp. on 3D
Structure from Multiple Images of Large-Scale Environments (SMILE), pp. 266–274. 1998

[35] Kobbelt L.P., Vorsatz J., Labsik U., Seidel H.P. “A Shrink Wrapping Approach to Remeshing Polygonal Surfaces.” Eurographics,
pp. 119–130. 1999

[36] Wood Z., Desbrun M., Schröder P., Breen D. “Semi-Regular Mesh Extraction from Volumes.” Vis., pp. 275–282. 2000

[37] Ohtake Y., Belyaev A.G. “Dual/Primal Mesh Optimization for Polygonized Implicit Surfaces.” Proc. of the 7th ACM Symp. on
Solid Model. and Appl., pp. 171–178. ACM Press, 2002

[38] de Figueiredo L.H., Gomes J., Terzopoulos D., Velho L. “Physically-Based Methods for Polygonization of Implicit Surfaces.”
Proc. of the Conf. on Graph. Interface, pp. 250–257. 1992

[39] Velho L., Gomes J., Terzopoulos D. “Implicit Manifolds, Triangulations and Dynamics.” J. of Neural, Parallel and Scientific
Comput., vol. 15, no. 1–2, 103–120, 1997

[40] Gloth O., Vilsmeier R. “Level Sets as Input for Hybrid Mesh Generation.” 9th Int. Meshing Roundtable, pp. 137–146. 2000

[41] Arnold A., Salinas S., Asakawa D., Delp S. “Accuracy of Muscle Moment Arms Estimated from MRI-Based Musculoskeletal
Models of the Lower Extremity.” Comput. Aided Surg., vol. 5, 108–119, 2000

[42] Garner B., Pandy M. “A Kinematic Model of the Upper Limb Based on the Visible Human Project (VHP) Image Dataset.”
Comput. Meth. Biomech. Biomed. Eng., vol. 2, 107–124, 1999

[43] Garner B., Pandy M. “Musculoskeletal Model of the Upper Limb Based on the Visible Human Male Dataset.” Comput. Meth.
Biomech. Biomed. Eng., vol. 4, 93–126, 2001

[44] Arnold A., Blemker S., Delp S. “Evaluation of a Deformable Musculoskeletal Model for Estimating Muscle-Tendon Lengths During
Crouch Gait.” Comput. Aided Surg., vol. 29, 263–274, 2001

[45] Üngör A. “Tiling 3D Euclidean Space with Acute Tetrahedra.” Proc. of the Canadian Conf. on Comp. Geom., pp. 169–172.
2001

[46] Yerry M.A., Shephard M.S. “Automatic Three-Dimensional Mesh Generation By The Modified Octree Technique.” Int. J. For
Num. Meth. in Eng., vol. 20, 1965–1990, 1984

[47] Shephard M.S., Georges M.K. “Automatic Three-Dimensional Mesh Generation by the Finite Octree Technique.” Int. J. for
Num. Meth. Eng., vol. 32, 709–739, 1991

[48] Bey J. “Tetrahedral Grid Refinement.” Computing, vol. 55, 355–378, 1995

[49] Grosso R., Lürig C., Ertl T. “The Multilevel Finite Element Method for Adaptive Mesh Optimization and Visualization of Volume
Data.” Visualization, pp. 387–394. 1997

[50] de Cougny H.L., Shephard M.S. “Parallel Refinement and Coarsening of Tetrahedral Meshes.” Int. J. for Num. Meth. in Eng.,
vol. 46, 1101–1125, 1999

[51] Bessette G., Becker E., Taylor L., Littlefield D. “Modeling of Impact Problems Using an H-adaptive, Explicit Lagrangian Finite
Element Method in Three Dimensions.” Comput. Meth. in Appl. Mech. and Eng., vol. 192, 1649–1679, 2003

[52] Tsitsiklis J. “Efficient Algorithms for Globally Optimal Trajectories.” IEEE Trans. on Automatic Control, vol. 40, 1528–1538,
1995

[53] Sethian J. “A Fast Marching Level Set Method for Monotonically Advancing Fronts.” Proc. Natl. Acad. Sci., vol. 93, 1591–1595,
1996

[54] Zhao H.K., Osher S., Fedkiw R. “Fast Surface Reconstruction Using the Level Set Method.” 1st IEEE Wrkshp. on Variational
and Level Set Meth., 8th Int. Conf. on Comput. Vis., pp. 194–202. 2001

[55] Osher S., Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, 2002. New York, NY

[56] Strain J. “Fast Tree-Based Redistancing for Level Set Computations.” J. Comput. Phys., vol. 152, 664–686, 1999

[57] Strain J. “Tree Methods for Moving Interfaces.” J. Comput. Phys., vol. 151, 616–648, 1999

[58] Westermann R., Kobbelt L., Ertl T. “Real-Time Exploration of Regular Volume Data by Adaptive Reconstruction of Isosurfaces.”
The Vis. Comput., vol. 15, no. 2, 100–111, 1999

[59] Ambrosio L., Soner H.M. “Level Set Approach to Mean Curvature Flow in Arbitrary Codimension.” J. of Differential Geometry,
vol. 43, 693–737, 1996

[60] Hughes T. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice Hall, 1987

[61] Bridson R., Marino S., Fedkiw R. “Simulation of clothing with folds and wrinkles.” Proc. of the 2003 ACM SIG-
GRAPH/Eurographics Symp. on Comput. Anim., pp. 28–36. 2003

[62] Bridson R., Fedkiw R., Anderson J. “Robust Treatment of Collisions, Contact and Friction for Cloth Animation.” ACM Trans.
Graph. (SIGGRAPH Proc.), vol. 21, 594–603, 2002

[63] Gnoffo P. “A Vectorized, Finite-Volume, Adaptive-Grid Algorithm for Navier-Stokes Calculations.” Num. Grid Generation, pp.
819–835, 1982

[64] Gnoffo P. “A Finite-Volume, Adaptive Grid Algorithm Applied to Planetary Entry Flowfields.” AIAA. 1982

[65] Lohner R., Morgan K., Zienkiewicz O.C. Adaptive Grid Refinement for Compressible Euler Equations, pp. 281–297. John Wiley
and Sons Ltd., 1986

[66] Nakahashi K., Deiwert G.S. “Self-Adaptive-Grid Method with Application to Airfoil Flow.” AIAA, vol. 25, no. 4, 513–520, 1987

[67] Dompierre J., Vallet M., Fortin M., Habashi W.G., Aı̈t-Ali-Yahia D., Boivin S., Bourgault Y., Tam A. “Edge-Based Mesh
Adaptation for CFD.” Conf. on Num. Meth. for the Euler and Navier-Stokes Equations. 1995

[68] Vallet M., Dompierre J., Bourgault Y., Fortin M., Habashi W.G. “Coupling Flow Solvers and Grids through an Edge-Based
Adaptive Grid Method.” Fluids Eng. Division Conf., vol. 3. 1996

[69] Fortin M., Vallet M., Dompierre J., Bourgault Y., Habashi W.G. “Anisotropic Mesh Adaptation: Theory, Validation, and
Applications.” Comput. Fluid Dynamics. 1996

[70] Bossen F.J., Heckbert P.S. “A Pliant Method for Anisotropic Mesh Generation.” 5th Int. Meshing Roundtable, pp. 63 – 76. 1996

[71] Palmerio B. “An Attraction-Repulsion Mesh Adaption Model for Flow Solution on Unstructured Grids.” Comput. and Fluids,
vol. 23, no. 3, 487–506, 1994

[72] Bourguignon D., Cani M.P. “Controlling Anisotropy in Mass-Spring Systems.” Eurographics, pp. 113–123. Eurographics Assoc.,
2000

[73] Cooper L., Maddock S. “Preventing Collapse Within Mass-Spring-Damper Models of Deformable Objects.” The 5th Int. Conf.
in Central Europe on Comput. Graphics and Vis. 1997

[74] Bonet J., Wood R. Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge, 1997

[75] Teran J., Blemker S., Ng V., Fedkiw R. “Finite Volume Methods for the Simulation of Skeletal Muscle.” Proc. of the 2003 ACM
SIGGRAPH/Eurographics Symp. on Comput. Anim., pp. 68–74. 2003

[76] Freitag L., Ollivier-Gooch C. “Tetrahedral Mesh Improvement Using Swapping and Smoothing.” Int. J. for Num. Meth. in Eng.,
vol. 40, 3979–4002, 1997

[77] Torczon V. “On the Convergence of Pattern Search Algorithms.” SIAM J. Opt., vol. 7, no. 1, 1–25, 1997

[78] Fung Y.C. Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag, New York, 1981

[79] Yucesoy C.A., Koopman B.H., Huijing P.A., Grootenboer H.J. “Three-Dimensional Finite Element Modeling of Skeletal Muscle
Using a Two-Domain Approach: Linked Fiber-Matrix Mesh Model.” J. of Biomech., vol. 35, 1253–1262, 2002

[80] Weiss J., Maker B., Govindjee S. “Finite-element impementation of incompressible, transversely isotropic hyperelasticity.” Com-
put. Meth. in Appl. Mech. and Eng., vol. 135, 107–128, 1996

[81] Zajac F. “Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control.” Critical
Reviews in Biomed. Eng., vol. 17, no. 4, 359–411, 1989

[82] Ng-Thow-Hing V., Fiume E. “Interactive Display and Animation of B-Spline Solids as Muscle Shape Primitives.” D. Thalmann,
M. van de Panne, editors, Proc. of the Eurographics Wrkshp. on Comput. Anim. and Sim. Springer Verlag, 1997

[83] Ng-Thow-Hing V., Fiume E. “Application-Specific Muscle Representations.” W. Sturzlinger, M. McCool, editors, Proc. of Gr.
Inter. 2002, pp. 107–115. Canadian Information Processing Society, 2002

[84] Crowninshield R. “Use of Optimization Techniques to Predict Muscle Forces.” Trans. of the ASME, vol. 100, 88–92, may 1978

[85] Bridson R. Computational Aspects of Dynamic Surfaces. Ph.D. thesis, Stanford University, June 2003

