- Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathBasicArrayAttributes.html
222 lines (202 loc) · 14.8 KB
/
BasicArrayAttributes.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
<!DOCTYPE html>
<htmlclass="writer-html5" lang="en" >
<head>
<metacharset="utf-8" /><metacontent="Topic: Numpy array attributes, Difficulty: Easy, Category: Section" name="description" />
<metacontent="ndim, shape, size, itemsize, dtype, examples" name="keywords" />
<metaname="viewport" content="width=device-width, initial-scale=1.0" />
<title>Basic Array Attributes — Python Like You Mean It</title>
<linkrel="stylesheet" href="../_static/pygments.css" type="text/css" />
<linkrel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<linkrel="stylesheet" href="../_static/my_theme.css" type="text/css" />
<!--[if lt IE 9]>
<script src="../_static/js/html5shiv.min.js"></script>
<![endif]-->
<scriptdata-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<scriptsrc="../_static/jquery.js"></script>
<scriptsrc="../_static/underscore.js"></script>
<scriptsrc="../_static/doctools.js"></script>
<scriptasync="async" src="https://www.googletagmanager.com/gtag/js?id=UA-115029372-1"></script>
<scriptsrc="../_static/gtag.js"></script>
<scriptcrossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script>window.MathJax={"tex": {"inlineMath": [["$","$"],["\\(","\\)"]],"processEscapes": true},"options": {"ignoreHtmlClass": "tex2jax_ignore|mathjax_ignore|document","processHtmlClass": "tex2jax_process|mathjax_process|math|output_area"}}</script>
<scriptdefer="defer" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<scriptsrc="../_static/js/theme.js"></script>
<linkrel="index" title="Index" href="../genindex.html" />
<linkrel="search" title="Search" href="../search.html" />
<linkrel="next" title="Functions for Creating NumPy Arrays" href="FunctionsForCreatingNumpyArrays.html" />
<linkrel="prev" title="Accessing Data Along Multiple Dimensions in an Array" href="AccessingDataAlongMultipleDimensions.html" />
</head>
<bodyclass="wy-body-for-nav">
<divclass="wy-grid-for-nav">
<navdata-toggle="wy-nav-shift" class="wy-nav-side">
<divclass="wy-side-scroll">
<divclass="wy-side-nav-search" >
<ahref="../index.html" class="icon icon-home"> Python Like You Mean It
</a>
<divclass="version">
1.4
</div>
<divrole="search">
<formid="rtd-search-form" class="wy-form" action="../search.html" method="get">
<inputtype="text" name="q" placeholder="Search docs" />
<inputtype="hidden" name="check_keywords" value="yes" />
<inputtype="hidden" name="area" value="default" />
</form>
</div>
</div><divclass="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<pclass="caption" role="heading"><spanclass="caption-text">Table of Contents:</span></p>
<ulclass="current">
<liclass="toctree-l1"><aclass="reference internal" href="../intro.html">Python Like You Mean It</a></li>
<liclass="toctree-l1"><aclass="reference internal" href="../module_1.html">Module 1: Getting Started with Python</a></li>
<liclass="toctree-l1"><aclass="reference internal" href="../module_2.html">Module 2: The Essentials of Python</a></li>
<liclass="toctree-l1"><aclass="reference internal" href="../module_2_problems.html">Module 2: Problems</a></li>
<liclass="toctree-l1 current"><aclass="reference internal" href="../module_3.html">Module 3: The Essentials of NumPy</a><ulclass="current">
<liclass="toctree-l2"><aclass="reference internal" href="IntroducingTheNDarray.html">Introducing the ND-array</a></li>
<liclass="toctree-l2"><aclass="reference internal" href="AccessingDataAlongMultipleDimensions.html">Accessing Data Along Multiple Dimensions in an Array</a></li>
<liclass="toctree-l2 current"><aclass="current reference internal" href="#">Basic Array Attributes</a><ul>
<liclass="toctree-l3"><aclass="reference internal" href="#Links-to-Official-Documentation">Links to Official Documentation</a></li>
</ul>
</li>
<liclass="toctree-l2"><aclass="reference internal" href="FunctionsForCreatingNumpyArrays.html">Functions for Creating NumPy Arrays</a></li>
<liclass="toctree-l2"><aclass="reference internal" href="ArrayTraversal.html">Iterating Over Arrays & Array-Traversal Order</a></li>
<liclass="toctree-l2"><aclass="reference internal" href="VectorizedOperations.html">“Vectorized” Operations: Optimized Computations on NumPy Arrays</a></li>
<liclass="toctree-l2"><aclass="reference internal" href="Broadcasting.html">Array Broadcasting</a></li>
<liclass="toctree-l2"><aclass="reference internal" href="BasicIndexing.html">Introducing Basic and Advanced Indexing</a></li>
<liclass="toctree-l2"><aclass="reference internal" href="AdvancedIndexing.html">Advanced Indexing</a></li>
<liclass="toctree-l2"><aclass="reference internal" href="AutoDiff.html">Automatic Differentiation</a></li>
</ul>
</li>
<liclass="toctree-l1"><aclass="reference internal" href="../module_3_problems.html">Module 3: Problems</a></li>
<liclass="toctree-l1"><aclass="reference internal" href="../module_4.html">Module 4: Object Oriented Programming</a></li>
<liclass="toctree-l1"><aclass="reference internal" href="../module_5.html">Module 5: Odds and Ends</a></li>
<liclass="toctree-l1"><aclass="reference internal" href="../changes.html">Changelog</a></li>
</ul>
</div>
</div>
</nav>
<sectiondata-toggle="wy-nav-shift" class="wy-nav-content-wrap"><navclass="wy-nav-top" aria-label="Mobile navigation menu" >
<idata-toggle="wy-nav-top" class="fa fa-bars"></i>
<ahref="../index.html">Python Like You Mean It</a>
</nav>
<divclass="wy-nav-content">
<divclass="rst-content">
<divrole="navigation" aria-label="Page navigation">
<ulclass="wy-breadcrumbs">
<li><ahref="../index.html" class="icon icon-home"></a> »</li>
<li><ahref="../module_3.html">Module 3: The Essentials of NumPy</a> »</li>
<li>Basic Array Attributes</li>
<liclass="wy-breadcrumbs-aside">
<ahref="../_sources/Module3_IntroducingNumpy/BasicArrayAttributes.md.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<divrole="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<divitemprop="articleBody">
<style>
/* CSS overrides for sphinx_rtd_theme */
/* 24px margin */
.nbinput.nblast.container,
.nboutput.nblast.container {
margin-bottom:19px; /* padding has already 5px */
}
/* ... except between code cells! */
.nblast.container+ .nbinput.container {
margin-top:-19px;
}
.admonition>p:before {
margin-right:4px; /* make room for the exclamation icon */
}
/* Fix math alignment, see https://github.com/rtfd/sphinx_rtd_theme/pull/686 */
.math {
text-align: unset;
}
</style>
<divclass="section" id="Basic-Array-Attributes">
<h1>Basic Array Attributes<aclass="headerlink" href="#Basic-Array-Attributes" title="Permalink to this headline"></a></h1>
<p>Armed with our understanding of multidimensional NumPy arrays, we now look at methods for programmatically inspecting an array’s attributes (e.g. its dimensionality). It is especially important to understand what an array’s “shape” is.</p>
<p>We will use the following array to provide context for our discussion:</p>
<divclass="highlight-python notranslate"><divclass="highlight"><pre><span></span><spanclass="gp">>>> </span><spanclass="kn">import</span><spanclass="nn">numpy</span><spanclass="k">as</span><spanclass="nn">np</span>
<spanclass="gp">>>> </span><spanclass="n">example_array</span><spanclass="o">=</span><spanclass="n">np</span><spanclass="o">.</span><spanclass="n">array</span><spanclass="p">([[[</span><spanclass="mi">0</span><spanclass="p">,</span><spanclass="mi">1</span><spanclass="p">,</span><spanclass="mi">2</span><spanclass="p">,</span><spanclass="mi">3</span><spanclass="p">],</span>
<spanclass="gp">... </span><spanclass="p">[</span><spanclass="mi">4</span><spanclass="p">,</span><spanclass="mi">5</span><spanclass="p">,</span><spanclass="mi">6</span><spanclass="p">,</span><spanclass="mi">7</span><spanclass="p">]],</span>
<spanclass="gp">...</span>
<spanclass="gp">... </span><spanclass="p">[[</span><spanclass="mi">8</span><spanclass="p">,</span><spanclass="mi">9</span><spanclass="p">,</span><spanclass="mi">10</span><spanclass="p">,</span><spanclass="mi">11</span><spanclass="p">],</span>
<spanclass="gp">... </span><spanclass="p">[</span><spanclass="mi">12</span><spanclass="p">,</span><spanclass="mi">13</span><spanclass="p">,</span><spanclass="mi">14</span><spanclass="p">,</span><spanclass="mi">15</span><spanclass="p">]],</span>
<spanclass="gp">...</span>
<spanclass="gp">... </span><spanclass="p">[[</span><spanclass="mi">16</span><spanclass="p">,</span><spanclass="mi">17</span><spanclass="p">,</span><spanclass="mi">18</span><spanclass="p">,</span><spanclass="mi">19</span><spanclass="p">],</span>
<spanclass="gp">... </span><spanclass="p">[</span><spanclass="mi">20</span><spanclass="p">,</span><spanclass="mi">21</span><spanclass="p">,</span><spanclass="mi">22</span><spanclass="p">,</span><spanclass="mi">23</span><spanclass="p">]]])</span>
</pre></div>
</div>
<p>According to the preceding discussion, it is a 3-dimensional array structured such that:</p>
<ulclass="simple">
<li><p>axis-0 discerns which of the <strong>3 sheets</strong> to select from.</p></li>
<li><p>axis-1 discerns which of the <strong>2 rows</strong>, in any sheet, to select from.</p></li>
<li><p>axis-2 discerns which of the <strong>4 columns</strong>, in any sheet and row, to select from.</p></li>
</ul>
<p><strong>ndarray.ndim</strong>:</p>
<p>The number of axes (dimensions) of the array.</p>
<divclass="highlight-python notranslate"><divclass="highlight"><pre><span></span><spanclass="c1"># dimensionality of the array</span>
<spanclass="o">>>></span><spanclass="n">example_array</span><spanclass="o">.</span><spanclass="n">ndim</span>
<spanclass="mi">3</span>
</pre></div>
</div>
<p><strong>ndarray.shape</strong>:</p>
<p>A tuple of integers indicating the number of elements that are stored along each dimension of the array. For a 2D-array with <spanclass="math notranslate nohighlight">\(N\)</span> rows and <spanclass="math notranslate nohighlight">\(M\)</span> columns, shape will be <spanclass="math notranslate nohighlight">\((N, M)\)</span>. The length of this shape-tuple is therefore equal to the number of dimensions of the array.</p>
<divclass="highlight-python notranslate"><divclass="highlight"><pre><span></span><spanclass="c1"># shape of the array</span>
<spanclass="o">>>></span><spanclass="n">example_array</span><spanclass="o">.</span><spanclass="n">shape</span>
<spanclass="p">(</span><spanclass="mi">3</span><spanclass="p">,</span><spanclass="mi">2</span><spanclass="p">,</span><spanclass="mi">4</span><spanclass="p">)</span>
</pre></div>
</div>
<p><strong>ndarray.size</strong>:</p>
<p>The total number of elements of the array. This is equal to the product of the elements of the array’s shape.</p>
<divclass="highlight-python notranslate"><divclass="highlight"><pre><span></span><spanclass="c1"># size of the array: the number of elements it stores</span>
<spanclass="o">>>></span><spanclass="n">example_array</span><spanclass="o">.</span><spanclass="n">size</span>
<spanclass="mi">24</span>
</pre></div>
</div>
<p><strong>ndarray.dtype</strong>:</p>
<p>An object describing the data type of the elements in the array. Recall that NumPy’s ND-arrays are <em>homogeneous</em>: they can only posses numbers of a uniform data type.</p>
<divclass="highlight-python notranslate"><divclass="highlight"><pre><span></span><spanclass="c1"># `example_array` contains integers, each of which are stored using 32 bits of memory</span>
<spanclass="o">>>></span><spanclass="n">example_array</span><spanclass="o">.</span><spanclass="n">dtype</span>
<spanclass="n">dtype</span><spanclass="p">(</span><spanclass="s1">'int32'</span><spanclass="p">)</span>
</pre></div>
</div>
<p><strong>ndarray.itemsize</strong>:</p>
<p>The size, in bytes (8 bits is 1 byte), of each element of the array. For example, an array of elements of type <codeclass="docutils literal notranslate"><spanclass="pre">float64</span></code> has itemsize 8 <spanclass="math notranslate nohighlight">\((= \frac{64}{8})\)</span>, while an array of type <codeclass="docutils literal notranslate"><spanclass="pre">complex32</span></code> has itemsize 4 <spanclass="math notranslate nohighlight">\((= \frac{32}{8})\)</span>.</p>
<divclass="highlight-python notranslate"><divclass="highlight"><pre><span></span><spanclass="c1"># each integer in `example_array` is represented using 4 bytes (32 bits) of memory</span>
<spanclass="o">>>></span><spanclass="n">example_array</span><spanclass="o">.</span><spanclass="n">itemsize</span>
<spanclass="mi">4</span>
</pre></div>
</div>
<divclass="section" id="Links-to-Official-Documentation">
<h2>Links to Official Documentation<aclass="headerlink" href="#Links-to-Official-Documentation" title="Permalink to this headline"></a></h2>
<ulclass="simple">
<li><p><aclass="reference external" href="https://numpy.org/doc/stable/reference/arrays.ndarray.html#array-attributes">Array attributes</a></p></li>
</ul>
</div>
</div>
</div>
</div>
<footer><divclass="rst-footer-buttons" role="navigation" aria-label="Footer">
<ahref="AccessingDataAlongMultipleDimensions.html" class="btn btn-neutral float-left" title="Accessing Data Along Multiple Dimensions in an Array" accesskey="p" rel="prev"><spanclass="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
<ahref="FunctionsForCreatingNumpyArrays.html" class="btn btn-neutral float-right" title="Functions for Creating NumPy Arrays" accesskey="n" rel="next">Next <spanclass="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
</div>
<hr/>
<divrole="contentinfo">
<p>© Copyright 2021, Ryan Soklaski.</p>
</div>
Built with <ahref="https://www.sphinx-doc.org/">Sphinx</a> using a
<ahref="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <ahref="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script>
jQuery(function(){
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>