comments | difficulty | edit_url |
---|---|---|
true | 中等 |
检查子树。你有两棵非常大的二叉树:T1,有几万个节点;T2,有几万个节点。设计一个算法,判断 T2 是否为 T1 的子树。
如果 T1 有这么一个节点 n,其子树与 T2 一模一样,则 T2 为 T1 的子树,也就是说,从节点 n 处把树砍断,得到的树与 T2 完全相同。
示例1:
输入:t1 = [1, 2, 3], t2 = [2] 输出:true
示例2:
输入:t1 = [1, null, 2, 4], t2 = [3, 2] 输出:false
提示:
- 树的节点数目范围为[0, 20000]。
我们首先判断 true
。
否则,判断 false
。
接着,我们判断 true
。否则,我们递归判断 true
,那么 true
。
时间复杂度
# Definition for a binary tree node.# class TreeNode:# def __init__(self, x):# self.val = x# self.left = None# self.right = NoneclassSolution: defcheckSubTree(self, t1: TreeNode, t2: TreeNode) ->bool: defdfs(t1, t2): ift2isNone: returnt1isNoneift1isNoneort1.val!=t2.val: returnFalsereturndfs(t1.left, t2.left) anddfs(t1.right, t2.right) ift2isNone: returnTrueift1isNone: returnFalseifdfs(t1, t2): returnTruereturnself.checkSubTree(t1.left, t2) orself.checkSubTree(t1.right, t2)
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */classSolution { publicbooleancheckSubTree(TreeNodet1, TreeNodet2) { if (t2 == null) { returntrue; } if (t1 == null) { returnfalse; } if (dfs(t1, t2)) { returntrue; } returncheckSubTree(t1.left, t2) || checkSubTree(t1.right, t2); } privatebooleandfs(TreeNodet1, TreeNodet2) { if (t2 == null) { returnt1 == null; } if (t1 == null || t1.val != t2.val) { returnfalse; } returndfs(t1.left, t2.left) && dfs(t1.right, t2.right); } }
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * };*/classSolution { public:boolcheckSubTree(TreeNode* t1, TreeNode* t2) { if (!t2) { returntrue; } if (!t1) { returnfalse; } if (dfs(t1, t2)) { returntrue; } returncheckSubTree(t1->left, t2) || checkSubTree(t1->right, t2); } booldfs(TreeNode* t1, TreeNode* t2) { if (!t2) { return !t1; } if (!t1 || t1->val != t2->val) { returnfalse; } returndfs(t1->left, t2->left) && dfs(t1->right, t2->right); } };
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */funccheckSubTree(t1*TreeNode, t2*TreeNode) bool { vardfsfunc(t1, t2*TreeNode) booldfs=func(t1, t2*TreeNode) bool { ift2==nil { returnt1==nil } ift1==nil||t1.Val!=t2.Val { returnfalse } returndfs(t1.Left, t2.Left) &&dfs(t1.Right, t2.Right) } ift2==nil { returntrue } ift1==nil { returnfalse } ifdfs(t1, t2) { returntrue } returncheckSubTree(t1.Left, t2) ||checkSubTree(t1.Right, t2) }
/** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */functioncheckSubTree(t1: TreeNode|null,t2: TreeNode|null): boolean{constdfs=(t1: TreeNode|null,t2: TreeNode|null): boolean=>{if(!t2){return!t1;}if(!t1||t1.val!==t2.val){returnfalse;}returndfs(t1.left,t2.left)&&dfs(t1.right,t2.right);};if(!t2){returntrue;}if(!t1){returnfalse;}if(dfs(t1,t2)){returntrue;}returncheckSubTree(t1.left,t2)||checkSubTree(t1.right,t2);}
// Definition for a binary tree node.// #[derive(Debug, PartialEq, Eq)]// pub struct TreeNode {// pub val: i32,// pub left: Option<Rc<RefCell<TreeNode>>>,// pub right: Option<Rc<RefCell<TreeNode>>>,// }//// impl TreeNode {// #[inline]// pub fn new(val: i32) -> Self {// TreeNode {// val,// left: None,// right: None// }// }// }use std::cell::RefCell;use std::rc::Rc;implSolution{fndfs(t1:&Option<Rc<RefCell<TreeNode>>>,t2:&Option<Rc<RefCell<TreeNode>>>) -> bool{match(t1, t2){(Some(node1),Some(node2)) => {let n1 = node1.borrow();let n2 = node2.borrow(); n1.val == n2.val && Solution::dfs(&n1.left,&n2.left) && Solution::dfs(&n1.right,&n2.right)}(None,Some(_)) => false,(Some(_),None) => false, _ => true,// Both are None}}pubfncheck_sub_tree(t1:Option<Rc<RefCell<TreeNode>>>,t2:Option<Rc<RefCell<TreeNode>>>,) -> bool{match(t1, t2){(Some(node1),Some(node2)) => {let n1 = node1.borrow();let n2 = node2.borrow();Solution::dfs(&Some(Rc::clone(&node1)),&Some(Rc::clone(&node2))) || Solution::check_sub_tree(n1.left.clone(),Some(Rc::clone(&node2))) || Solution::check_sub_tree(n1.right.clone(),Some(Rc::clone(&node2)))}(Some(_),None) => true,(None,Some(_)) => false, _ => true,// Both are None or t1 is None}}}
/* class TreeNode { * var val: Int * var left: TreeNode? * var right: TreeNode? * * init(_ val: Int, _ left: TreeNode? = nil, _ right: TreeNode? = nil) { * self.val = val * self.left = left * self.right = right * } * } */ classSolution{func checkSubTree(_ t1:TreeNode?, _ t2:TreeNode?)->Bool{if t2 ==nil{returntrue}if t1 ==nil{returnfalse}ifisSameTree(t1, t2){returntrue}returncheckSubTree(t1!.left, t2) || checkSubTree(t1!.right, t2)}privatefunc isSameTree(_ t1:TreeNode?, _ t2:TreeNode?)->Bool{if t1 ==nil && t2 ==nil{returntrue}if t1 ==nil || t2 ==nil{returnfalse}if t1!.val != t2!.val {returnfalse}returnisSameTree(t1!.left, t2!.left) && isSameTree(t1!.right, t2!.right)}}