- Notifications
You must be signed in to change notification settings - Fork 366
/
Copy pathCP_Templates.py
185 lines (135 loc) · 3.75 KB
/
CP_Templates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
defdisplay(string_to_print):
stdout.write(str(string_to_print) +"\n")
deffast_exp(base, power):
result=1
whilepower>0:
ifpower%2==1:
result= (result*base) %m
power=power//2
base= (base*base) %m
returnresult
# n**0.5 complexity
defprime_factors(n):
factors=dict()
foriinrange(2, math.ceil(math.sqrt(n)) +1):
whilen%i==0:
ifiinfactors:
factors[i] +=1
else:
factors[i] =1
n=n//i
ifn>2:
factors[n] =1
return (factors)
defall_factors(n):
returnset(reduce(list.__add__,([i, n//i] foriinrange(1, int(n**0.5) +1) ifn%i==0)))
deffibonacci_modP(n, MOD):
ifn<2: return1
return (cached_fn(fibonacci_modP, (n+1) //2, MOD) *cached_fn(fibonacci_modP, n//2, MOD) +cached_fn(fibonacci_modP, (n-1) //2, MOD) *cached_fn(fibonacci_modP, (n-2) //2, MOD)) %MOD
deffactorial_modP_Wilson(n, p):
if (p<=n):
return0
res= (p-1)
foriinrange(n+1, p):
res= (res*cached_fn(InverseEuler, i, p)) %p
returnres
defbinary(n, digits=20):
b=bin(n)[2:]
b='0'* (digits-len(b)) +b
returnb
defis_prime(n):
"""Returns True if n is prime."""
ifn<4:
returnTrue
ifn%2==0:
returnFalse
ifn%3==0:
returnFalse
i=5
w=2
whilei*i<=n:
ifn%i==0:
returnFalse
i+=w
w=6-w
returnTrue
# Sieve of Eratosthenes
defsieve(n):
prime= [Trueforiinrange(n+1)]
p=2
whilep*p<=n:
ifprime[p]:
foriinrange(p*2, n+1, p):
prime[i] =False
p+=1
returnprime
# O(nlog(logn))
factorial_modP= []
defwarm_up_fac(MOD):
globalfactorial_modP, fac_warm_up
iffac_warm_up: return
factorial_modP= [1for_inrange(fac_warm_up_size+1)]
foriinrange(2, fac_warm_up_size):
factorial_modP[i] = (factorial_modP[i-1] *i) %MOD
fac_warm_up=True
defInverseEuler(n, MOD):
returnpow(n, MOD-2, MOD)
defnCk(n, k):
if(k>n-k):
k=n-k
res=1
foriinrange(k):
res=res* (n-i)
res=res/ (i+1)
returnres
defnCr(n, r, MOD):
globalfac_warm_up, factorial_modP
ifnotfac_warm_up:
warm_up_fac(MOD)
fac_warm_up=True
return (factorial_modP[n] * (
(pow(factorial_modP[r], MOD-2, MOD) *pow(factorial_modP[n-r], MOD-2, MOD)) %MOD)) %MOD
deftest_print(*args):
iftestingMode:
print(args)
defdisplay_list(list1, sep=" "):
stdout.write(sep.join(map(str, list1)) +"\n")
defdisplay_2D_list(li):
foriinli:
print(i)
defprefix_sum(li):
sm=0
res= []
foriinli:
sm+=i
res.append(sm)
returnres
defget_int():
returnint(stdin.readline().strip())
defget_tuple():
returnmap(int, stdin.readline().split())
defget_list():
returnlist(map(int, stdin.readline().split()))
memory=dict()
defclear_cache():
globalmemory
memory=dict()
defcached_fn(fn, *args):
globalmemory
ifargsinmemory:
returnmemory[args]
else:
result=fn(*args)
memory[args] =result
returnresult
defncr(n, r):
returnmath.factorial(n) / (math.factorial(n-r) *math.factorial(r))
defbinary_search(i, li):
fn=lambdax: li[x] -x//i
x=-1
b=len(li)
whileb>=1:
whileb+x<len(li) andfn(b+x) >0: # Change this condition 2 to whatever you like
x+=b
b=b//2
returnx