- Notifications
You must be signed in to change notification settings - Fork 19.9k
/
Copy pathMonteCarloTreeSearch.java
173 lines (139 loc) · 5.68 KB
/
MonteCarloTreeSearch.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
packagecom.thealgorithms.searches;
importjava.util.ArrayList;
importjava.util.Collections;
importjava.util.Comparator;
importjava.util.Random;
/**
* Monte Carlo Tree Search (MCTS) is a heuristic search algorithm used in
* decition taking problems especially games.
*
* See more: https://en.wikipedia.org/wiki/Monte_Carlo_tree_search,
* https://www.baeldung.com/java-monte-carlo-tree-search
*/
publicclassMonteCarloTreeSearch {
publicclassNode {
Nodeparent;
ArrayList<Node> childNodes;
booleanisPlayersTurn; // True if it is the player's turn.
booleanplayerWon; // True if the player won; false if the opponent won.
intscore;
intvisitCount;
publicNode() {
}
publicNode(Nodeparent, booleanisPlayersTurn) {
this.parent = parent;
childNodes = newArrayList<>();
this.isPlayersTurn = isPlayersTurn;
playerWon = false;
score = 0;
visitCount = 0;
}
}
staticfinalintWIN_SCORE = 10;
staticfinalintTIME_LIMIT = 500; // Time the algorithm will be running for (in milliseconds).
/**
* Explores a game tree using Monte Carlo Tree Search (MCTS) and returns the
* most promising node.
*
* @param rootNode Root node of the game tree.
* @return The most promising child of the root node.
*/
publicNodemonteCarloTreeSearch(NoderootNode) {
NodewinnerNode;
doubletimeLimit;
// Expand the root node.
addChildNodes(rootNode, 10);
timeLimit = System.currentTimeMillis() + TIME_LIMIT;
// Explore the tree until the time limit is reached.
while (System.currentTimeMillis() < timeLimit) {
NodepromisingNode;
// Get a promising node using UCT.
promisingNode = getPromisingNode(rootNode);
// Expand the promising node.
if (promisingNode.childNodes.size() == 0) {
addChildNodes(promisingNode, 10);
}
simulateRandomPlay(promisingNode);
}
winnerNode = getWinnerNode(rootNode);
printScores(rootNode);
System.out.format("%nThe optimal node is: %02d%n", rootNode.childNodes.indexOf(winnerNode) + 1);
returnwinnerNode;
}
publicvoidaddChildNodes(Nodenode, intchildCount) {
for (inti = 0; i < childCount; i++) {
node.childNodes.add(newNode(node, !node.isPlayersTurn));
}
}
/**
* Uses UCT to find a promising child node to be explored.
*
* UCT: Upper Confidence bounds applied to Trees.
*
* @param rootNode Root node of the tree.
* @return The most promising node according to UCT.
*/
publicNodegetPromisingNode(NoderootNode) {
NodepromisingNode = rootNode;
// Iterate until a node that hasn't been expanded is found.
while (promisingNode.childNodes.size() != 0) {
doubleuctIndex = Double.MIN_VALUE;
intnodeIndex = 0;
// Iterate through child nodes and pick the most promising one
// using UCT (Upper Confidence bounds applied to Trees).
for (inti = 0; i < promisingNode.childNodes.size(); i++) {
NodechildNode = promisingNode.childNodes.get(i);
doubleuctTemp;
// If child node has never been visited
// it will have the highest uct value.
if (childNode.visitCount == 0) {
nodeIndex = i;
break;
}
uctTemp = ((double) childNode.score / childNode.visitCount) + 1.41 * Math.sqrt(Math.log(promisingNode.visitCount) / (double) childNode.visitCount);
if (uctTemp > uctIndex) {
uctIndex = uctTemp;
nodeIndex = i;
}
}
promisingNode = promisingNode.childNodes.get(nodeIndex);
}
returnpromisingNode;
}
/**
* Simulates a random play from a nodes current state and back propagates
* the result.
*
* @param promisingNode Node that will be simulated.
*/
publicvoidsimulateRandomPlay(NodepromisingNode) {
Randomrand = newRandom();
NodetempNode = promisingNode;
booleanisPlayerWinner;
// The following line randomly determines whether the simulated play is a win or loss.
// To use the MCTS algorithm correctly this should be a simulation of the nodes' current
// state of the game until it finishes (if possible) and use an evaluation function to
// determine how good or bad the play was.
// e.g. Play tic tac toe choosing random squares until the game ends.
promisingNode.playerWon = (rand.nextInt(6) == 0);
isPlayerWinner = promisingNode.playerWon;
// Back propagation of the random play.
while (tempNode != null) {
tempNode.visitCount++;
// Add wining scores to bouth player and opponent depending on the turn.
if ((tempNode.isPlayersTurn && isPlayerWinner) || (!tempNode.isPlayersTurn && !isPlayerWinner)) {
tempNode.score += WIN_SCORE;
}
tempNode = tempNode.parent;
}
}
publicNodegetWinnerNode(NoderootNode) {
returnCollections.max(rootNode.childNodes, Comparator.comparing(c -> c.score));
}
publicvoidprintScores(NoderootNode) {
System.out.println("N.\tScore\t\tVisits");
for (inti = 0; i < rootNode.childNodes.size(); i++) {
System.out.printf("%02d\t%d\t\t%d%n", i + 1, rootNode.childNodes.get(i).score, rootNode.childNodes.get(i).visitCount);
}
}
}