- Notifications
You must be signed in to change notification settings - Fork 19.9k
/
Copy pathMinimumPathSum.java
64 lines (51 loc) · 1.78 KB
/
MinimumPathSum.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
packagecom.thealgorithms.dynamicprogramming;
/*
Given the following grid with length m and width n:
\---\---\---\ (n)
\ 1 \ 3 \ 1 \
\---\---\---\
\ 1 \ 5 \ 1 \
\---\---\---\
\ 4 \ 2 \ 1 \
\---\---\---\
(m)
Find the path where its sum is the smallest.
The Time Complexity of your algorithm should be smaller than or equal to O(mn).
The Space Complexity of your algorithm should be smaller than or equal to O(n).
You can only move from the top left corner to the down right corner.
You can only move one step down or right.
EXAMPLE:
INPUT: grid = [[1,3,1],[1,5,1],[4,2,1]]
OUTPUT: 7
EXPLANATIONS: 1 + 3 + 1 + 1 + 1 = 7
For more information see https://www.geeksforgeeks.org/maximum-path-sum-matrix/
*/
publicfinalclassMinimumPathSum {
privateMinimumPathSum() {
}
publicstaticintminimumPathSum(finalint[][] grid) {
intnumRows = grid.length;
intnumCols = grid[0].length;
if (numCols == 0) {
return0;
}
int[] dp = newint[numCols];
// Initialize the first element of the dp array
dp[0] = grid[0][0];
// Calculate the minimum path sums for the first row
for (intcol = 1; col < numCols; col++) {
dp[col] = dp[col - 1] + grid[0][col];
}
// Calculate the minimum path sums for the remaining rows
for (introw = 1; row < numRows; row++) {
// Update the minimum path sum for the first column
dp[0] += grid[row][0];
for (intcol = 1; col < numCols; col++) {
// Choose the minimum path sum from the left or above
dp[col] = Math.min(dp[col - 1], dp[col]) + grid[row][col];
}
}
// Return the minimum path sum for the last cell in the grid
returndp[numCols - 1];
}
}