- Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathBlowfishEncoder.cs
393 lines (352 loc) · 23.6 KB
/
BlowfishEncoder.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
usingSystem;
usingSystem.Linq;
usingSystem.Text;
namespaceAlgorithms.Encoders;
/// <summary>
/// <para>
/// The Blowfish algorithm is a symmetric-key block cipher, which means it uses the same secret key to encrypt and
/// decrypt data. It was designed by Bruce Schneier in 1993.
/// </para>
/// <para>
/// The blowfish algorithm works on 64-bit blocks of data, which are divided into two 32-bit halves: left and right.
/// It uses a variable-length key, from 32 bits to 448 bits, to generate 18 subkeys and four S-boxes, which are arrays
/// of 256 32-bit words. The subkeys and the S-boxes are key-dependent, meaning that they change according to the secret key.
/// </para>
/// <para>
/// The blowfish algorithm performs 16 rounds of encryption or decryption on each block of data, using a Feistel network
/// structure. In each round, the left half is XORed with a subkey, then passed through a function F that applies four
/// S-box lookups and two XOR operations. The output of F is then XORed with the right half. The left and right halves
/// are swapped at the end of each round, except for the last one. The final output is XORed with two more subkeys to
/// produce the encrypted or decrypted block.
/// </para>
/// <see href="https://en.wikipedia.org/wiki/Blowfish_%28cipher%29">Blowfish on Wikipedia</see>.
/// </summary>
publicclassBlowfishEncoder
{
// Initialize modVal to 2^32
privateconstulongModVal=4294967296L;
// Initialize the substitution boxes
privatereadonlystring[][]s=
{
new[]
{
"d1310ba6","98dfb5ac","2ffd72db","d01adfb7","b8e1afed","6a267e96","ba7c9045","f12c7f99",
"24a19947","b3916cf7","0801f2e2","858efc16","636920d8","71574e69","a458fea3","f4933d7e",
"0d95748f","728eb658","718bcd58","82154aee","7b54a41d","c25a59b5","9c30d539","2af26013",
"c5d1b023","286085f0","ca417918","b8db38ef","8e79dcb0","603a180e","6c9e0e8b","b01e8a3e",
"d71577c1","bd314b27","78af2fda","55605c60","e65525f3","aa55ab94","57489862","63e81440",
"55ca396a","2aab10b6","b4cc5c34","1141e8ce","a15486af","7c72e993","b3ee1411","636fbc2a",
"2ba9c55d","741831f6","ce5c3e16","9b87931e","afd6ba33","6c24cf5c","7a325381","28958677",
"3b8f4898","6b4bb9af","c4bfe81b","66282193","61d809cc","fb21a991","487cac60","5dec8032",
"ef845d5d","e98575b1","dc262302","eb651b88","23893e81","d396acc5","0f6d6ff3","83f44239",
"2e0b4482","a4842004","69c8f04a","9e1f9b5e","21c66842","f6e96c9a","670c9c61","abd388f0",
"6a51a0d2","d8542f68","960fa728","ab5133a3","6eef0b6c","137a3be4","ba3bf050","7efb2a98",
"a1f1651d","39af0176","66ca593e","82430e88","8cee8619","456f9fb4","7d84a5c3","3b8b5ebe",
"e06f75d8","85c12073","401a449f","56c16aa6","4ed3aa62","363f7706","1bfedf72","429b023d",
"37d0d724","d00a1248","db0fead3","49f1c09b","075372c9","80991b7b","25d479d8","f6e8def7",
"e3fe501a","b6794c3b","976ce0bd","04c006ba","c1a94fb6","409f60c4","5e5c9ec2","196a2463",
"68fb6faf","3e6c53b5","1339b2eb","3b52ec6f","6dfc511f","9b30952c","cc814544","af5ebd09",
"bee3d004","de334afd","660f2807","192e4bb3","c0cba857","45c8740f","d20b5f39","b9d3fbdb",
"5579c0bd","1a60320a","d6a100c6","402c7279","679f25fe","fb1fa3cc","8ea5e9f8","db3222f8",
"3c7516df","fd616b15","2f501ec8","ad0552ab","323db5fa","fd238760","53317b48","3e00df82",
"9e5c57bb","ca6f8ca0","1a87562e","df1769db","d542a8f6","287effc3","ac6732c6","8c4f5573",
"695b27b0","bbca58c8","e1ffa35d","b8f011a0","10fa3d98","fd2183b8","4afcb56c","2dd1d35b",
"9a53e479","b6f84565","d28e49bc","4bfb9790","e1ddf2da","a4cb7e33","62fb1341","cee4c6e8",
"ef20cada","36774c01","d07e9efe","2bf11fb4","95dbda4d","ae909198","eaad8e71","6b93d5a0",
"d08ed1d0","afc725e0","8e3c5b2f","8e7594b7","8ff6e2fb","f2122b64","8888b812","900df01c",
"4fad5ea0","688fc31c","d1cff191","b3a8c1ad","2f2f2218","be0e1777","ea752dfe","8b021fa1",
"e5a0cc0f","b56f74e8","18acf3d6","ce89e299","b4a84fe0","fd13e0b7","7cc43b81","d2ada8d9",
"165fa266","80957705","93cc7314","211a1477","e6ad2065","77b5fa86","c75442f5","fb9d35cf",
"ebcdaf0c","7b3e89a0","d6411bd3","ae1e7e49","00250e2d","2071b35e","226800bb","57b8e0af",
"2464369b","f009b91e","5563911d","59dfa6aa","78c14389","d95a537f","207d5ba2","02e5b9c5",
"83260376","6295cfa9","11c81968","4e734a41","b3472dca","7b14a94a","1b510052","9a532915",
"d60f573f","bc9bc6e4","2b60a476","81e67400","08ba6fb5","571be91f","f296ec6b","2a0dd915",
"b6636521","e7b9f9b6","ff34052e","c5855664","53b02d5d","a99f8fa1","08ba4799","6e85076a",
},
new[]
{
"4b7a70e9","b5b32944","db75092e","c4192623","ad6ea6b0","49a7df7d","9cee60b8","8fedb266",
"ecaa8c71","699a17ff","5664526c","c2b19ee1","193602a5","75094c29","a0591340","e4183a3e",
"3f54989a","5b429d65","6b8fe4d6","99f73fd6","a1d29c07","efe830f5","4d2d38e6","f0255dc1",
"4cdd2086","8470eb26","6382e9c6","021ecc5e","09686b3f","3ebaefc9","3c971814","6b6a70a1",
"687f3584","52a0e286","b79c5305","aa500737","3e07841c","7fdeae5c","8e7d44ec","5716f2b8",
"b03ada37","f0500c0d","f01c1f04","0200b3ff","ae0cf51a","3cb574b2","25837a58","dc0921bd",
"d19113f9","7ca92ff6","94324773","22f54701","3ae5e581","37c2dadc","c8b57634","9af3dda7",
"a9446146","0fd0030e","ecc8c73e","a4751e41","e238cd99","3bea0e2f","3280bba1","183eb331",
"4e548b38","4f6db908","6f420d03","f60a04bf","2cb81290","24977c79","5679b072","bcaf89af",
"de9a771f","d9930810","b38bae12","dccf3f2e","5512721f","2e6b7124","501adde6","9f84cd87",
"7a584718","7408da17","bc9f9abc","e94b7d8c","ec7aec3a","db851dfa","63094366","c464c3d2",
"ef1c1847","3215d908","dd433b37","24c2ba16","12a14d43","2a65c451","50940002","133ae4dd",
"71dff89e","10314e55","81ac77d6","5f11199b","043556f1","d7a3c76b","3c11183b","5924a509",
"f28fe6ed","97f1fbfa","9ebabf2c","1e153c6e","86e34570","eae96fb1","860e5e0a","5a3e2ab3",
"771fe71c","4e3d06fa","2965dcb9","99e71d0f","803e89d6","5266c825","2e4cc978","9c10b36a",
"c6150eba","94e2ea78","a5fc3c53","1e0a2df4","f2f74ea7","361d2b3d","1939260f","19c27960",
"5223a708","f71312b6","ebadfe6e","eac31f66","e3bc4595","a67bc883","b17f37d1","018cff28",
"c332ddef","be6c5aa5","65582185","68ab9802","eecea50f","db2f953b","2aef7dad","5b6e2f84",
"1521b628","29076170","ecdd4775","619f1510","13cca830","eb61bd96","0334fe1e","aa0363cf",
"b5735c90","4c70a239","d59e9e0b","cbaade14","eecc86bc","60622ca7","9cab5cab","b2f3846e",
"648b1eaf","19bdf0ca","a02369b9","655abb50","40685a32","3c2ab4b3","319ee9d5","c021b8f7",
"9b540b19","875fa099","95f7997e","623d7da8","f837889a","97e32d77","11ed935f","16681281",
"0e358829","c7e61fd6","96dedfa1","7858ba99","57f584a5","1b227263","9b83c3ff","1ac24696",
"cdb30aeb","532e3054","8fd948e4","6dbc3128","58ebf2ef","34c6ffea","fe28ed61","ee7c3c73",
"5d4a14d9","e864b7e3","42105d14","203e13e0","45eee2b6","a3aaabea","db6c4f15","facb4fd0",
"c742f442","ef6abbb5","654f3b1d","41cd2105","d81e799e","86854dc7","e44b476a","3d816250",
"cf62a1f2","5b8d2646","fc8883a0","c1c7b6a3","7f1524c3","69cb7492","47848a0b","5692b285",
"095bbf00","ad19489d","1462b174","23820e00","58428d2a","0c55f5ea","1dadf43e","233f7061",
"3372f092","8d937e41","d65fecf1","6c223bdb","7cde3759","cbee7460","4085f2a7","ce77326e",
"a6078084","19f8509e","e8efd855","61d99735","a969a7aa","c50c06c2","5a04abfc","800bcadc",
"9e447a2e","c3453484","fdd56705","0e1e9ec9","db73dbd3","105588cd","675fda79","e3674340",
"c5c43465","713e38d8","3d28f89e","f16dff20","153e21e7","8fb03d4a","e6e39f2b","db83adf7",
},
new[]
{
"e93d5a68","948140f7","f64c261c","94692934","411520f7","7602d4f7","bcf46b2e","d4a20068",
"d4082471","3320f46a","43b7d4b7","500061af","1e39f62e","97244546","14214f74","bf8b8840",
"4d95fc1d","96b591af","70f4ddd3","66a02f45","bfbc09ec","03bd9785","7fac6dd0","31cb8504",
"96eb27b3","55fd3941","da2547e6","abca0a9a","28507825","530429f4","0a2c86da","e9b66dfb",
"68dc1462","d7486900","680ec0a4","27a18dee","4f3ffea2","e887ad8c","b58ce006","7af4d6b6",
"aace1e7c","d3375fec","ce78a399","406b2a42","20fe9e35","d9f385b9","ee39d7ab","3b124e8b",
"1dc9faf7","4b6d1856","26a36631","eae397b2","3a6efa74","dd5b4332","6841e7f7","ca7820fb",
"fb0af54e","d8feb397","454056ac","ba489527","55533a3a","20838d87","fe6ba9b7","d096954b",
"55a867bc","a1159a58","cca92963","99e1db33","a62a4a56","3f3125f9","5ef47e1c","9029317c",
"fdf8e802","04272f70","80bb155c","05282ce3","95c11548","e4c66d22","48c1133f","c70f86dc",
"07f9c9ee","41041f0f","404779a4","5d886e17","325f51eb","d59bc0d1","f2bcc18f","41113564",
"257b7834","602a9c60","dff8e8a3","1f636c1b","0e12b4c2","02e1329e","af664fd1","cad18115",
"6b2395e0","333e92e1","3b240b62","eebeb922","85b2a20e","e6ba0d99","de720c8c","2da2f728",
"d0127845","95b794fd","647d0862","e7ccf5f0","5449a36f","877d48fa","c39dfd27","f33e8d1e",
"0a476341","992eff74","3a6f6eab","f4f8fd37","a812dc60","a1ebddf8","991be14c","db6e6b0d",
"c67b5510","6d672c37","2765d43b","dcd0e804","f1290dc7","cc00ffa3","b5390f92","690fed0b",
"667b9ffb","cedb7d9c","a091cf0b","d9155ea3","bb132f88","515bad24","7b9479bf","763bd6eb",
"37392eb3","cc115979","8026e297","f42e312d","6842ada7","c66a2b3b","12754ccc","782ef11c",
"6a124237","b79251e7","06a1bbe6","4bfb6350","1a6b1018","11caedfa","3d25bdd8","e2e1c3c9",
"44421659","0a121386","d90cec6e","d5abea2a","64af674e","da86a85f","bebfe988","64e4c3fe",
"9dbc8057","f0f7c086","60787bf8","6003604d","d1fd8346","f6381fb0","7745ae04","d736fccc",
"83426b33","f01eab71","b0804187","3c005e5f","77a057be","bde8ae24","55464299","bf582e61",
"4e58f48f","f2ddfda2","f474ef38","8789bdc2","5366f9c3","c8b38e74","b475f255","46fcd9b9",
"7aeb2661","8b1ddf84","846a0e79","915f95e2","466e598e","20b45770","8cd55591","c902de4c",
"b90bace1","bb8205d0","11a86248","7574a99e","b77f19b6","e0a9dc09","662d09a1","c4324633",
"e85a1f02","09f0be8c","4a99a025","1d6efe10","1ab93d1d","0ba5a4df","a186f20f","2868f169",
"dcb7da83","573906fe","a1e2ce9b","4fcd7f52","50115e01","a70683fa","a002b5c4","0de6d027",
"9af88c27","773f8641","c3604c06","61a806b5","f0177a28","c0f586e0","006058aa","30dc7d62",
"11e69ed7","2338ea63","53c2dd94","c2c21634","bbcbee56","90bcb6de","ebfc7da1","ce591d76",
"6f05e409","4b7c0188","39720a3d","7c927c24","86e3725f","724d9db9","1ac15bb4","d39eb8fc",
"ed545578","08fca5b5","d83d7cd3","4dad0fc4","1e50ef5e","b161e6f8","a28514d9","6c51133c",
"6fd5c7e7","56e14ec4","362abfce","ddc6c837","d79a3234","92638212","670efa8e","406000e0",
},
new[]
{
"3a39ce37","d3faf5cf","abc27737","5ac52d1b","5cb0679e","4fa33742","d3822740","99bc9bbe",
"d5118e9d","bf0f7315","d62d1c7e","c700c47b","b78c1b6b","21a19045","b26eb1be","6a366eb4",
"5748ab2f","bc946e79","c6a376d2","6549c2c8","530ff8ee","468dde7d","d5730a1d","4cd04dc6",
"2939bbdb","a9ba4650","ac9526e8","be5ee304","a1fad5f0","6a2d519a","63ef8ce2","9a86ee22",
"c089c2b8","43242ef6","a51e03aa","9cf2d0a4","83c061ba","9be96a4d","8fe51550","ba645bd6",
"2826a2f9","a73a3ae1","4ba99586","ef5562e9","c72fefd3","f752f7da","3f046f69","77fa0a59",
"80e4a915","87b08601","9b09e6ad","3b3ee593","e990fd5a","9e34d797","2cf0b7d9","022b8b51",
"96d5ac3a","017da67d","d1cf3ed6","7c7d2d28","1f9f25cf","adf2b89b","5ad6b472","5a88f54c",
"e029ac71","e019a5e6","47b0acfd","ed93fa9b","e8d3c48d","283b57cc","f8d56629","79132e28",
"785f0191","ed756055","f7960e44","e3d35e8c","15056dd4","88f46dba","03a16125","0564f0bd",
"c3eb9e15","3c9057a2","97271aec","a93a072a","1b3f6d9b","1e6321f5","f59c66fb","26dcf319",
"7533d928","b155fdf5","03563482","8aba3cbb","28517711","c20ad9f8","abcc5167","ccad925f",
"4de81751","3830dc8e","379d5862","9320f991","ea7a90c2","fb3e7bce","5121ce64","774fbe32",
"a8b6e37e","c3293d46","48de5369","6413e680","a2ae0810","dd6db224","69852dfd","09072166",
"b39a460a","6445c0dd","586cdecf","1c20c8ae","5bbef7dd","1b588d40","ccd2017f","6bb4e3bb",
"dda26a7e","3a59ff45","3e350a44","bcb4cdd5","72eacea8","fa6484bb","8d6612ae","bf3c6f47",
"d29be463","542f5d9e","aec2771b","f64e6370","740e0d8d","e75b1357","f8721671","af537d5d",
"4040cb08","4eb4e2cc","34d2466a","0115af84","e1b00428","95983a1d","06b89fb4","ce6ea048",
"6f3f3b82","3520ab82","011a1d4b","277227f8","611560b1","e7933fdc","bb3a792b","344525bd",
"a08839e1","51ce794b","2f32c9b7","a01fbac9","e01cc87e","bcc7d1f6","cf0111c3","a1e8aac7",
"1a908749","d44fbd9a","d0dadecb","d50ada38","0339c32a","c6913667","8df9317c","e0b12b4f",
"f79e59b7","43f5bb3a","f2d519ff","27d9459c","bf97222c","15e6fc2a","0f91fc71","9b941525",
"fae59361","ceb69ceb","c2a86459","12baa8d1","b6c1075e","e3056a0c","10d25065","cb03a442",
"e0ec6e0e","1698db3b","4c98a0be","3278e964","9f1f9532","e0d392df","d3a0342b","8971f21e",
"1b0a7441","4ba3348c","c5be7120","c37632d8","df359f8d","9b992f2e","e60b6f47","0fe3f11d",
"e54cda54","1edad891","ce6279cf","cd3e7e6f","1618b166","fd2c1d05","848fd2c5","f6fb2299",
"f523f357","a6327623","93a83531","56cccd02","acf08162","5a75ebb5","6e163697","88d273cc",
"de966292","81b949d0","4c50901b","71c65614","e6c6c7bd","327a140a","45e1d006","c3f27b9a",
"c9aa53fd","62a80f00","bb25bfe2","35bdd2f6","71126905","b2040222","b6cbcf7c","cd769c2b",
"53113ec0","1640e3d3","38abbd60","2547adf0","ba38209c","f746ce76","77afa1c5","20756060",
"85cbfe4e","8ae88dd8","7aaaf9b0","4cf9aa7e","1948c25c","02fb8a8c","01c36ae4","d6ebe1f9",
"90d4f869","a65cdea0","3f09252d","c208e69f","b74e6132","ce77e25b","578fdfe3","3ac372e6",
},
};
// Initialize the P-array sub-keys
privatereadonlystring[]p=
{
"243f6a88","85a308d3","13198a2e","03707344","a4093822","299f31d0","082efa98","ec4e6c89","452821e6",
"38d01377","be5466cf","34e90c6c","c0ac29b7","c97c50dd","3f84d5b5","b5470917","9216d5d9","8979fb1b",
};
/// <summary>
/// Generate a key for the encryption algorithm based on the given string parameter.
/// </summary>
/// <param name="key">The key to generate the subkey from.</param>
publicvoidGenerateKey(stringkey)
{
varj=0;
for(vari=0;i<p.Length;i++)
{
// Perform the key expansion
varsubKey=key.Substring(j%key.Length,8);
p[i]=Xor(p[i],subKey);
j+=8;
}
}
/// <summary>
/// Encrypts a string using the blowfish algorithm.
/// </summary>
/// <param name="plainText">The string to be encrypted, represented as a hexadecimal string.</param>
/// <returns>The encrypted string, represented as a hexadecimal string.</returns>
publicstringEncrypt(stringplainText)
{
// Perform the 16 rounds of the blowfish algorithm on the plainText.
for(vari=0;i<16;i++)
{
plainText=Round(i,plainText);
}
// Swap the left and right parts of the plainText.
varleft=plainText.Substring(8,8);
varright=plainText[..8];
// XOR the left half with the last subkey of the P-array.
left=Xor(left,p[17]);
// XOR the right half with the second to last subkey from the P-array.
right=Xor(right,p[16]);
// Return the encrypted string as a concatenated string.
returnleft+right;
}
/// <summary>
/// Decrypts a string using the blowfish algorithm.
/// </summary>
/// <param name="cipherText">The string to be decrypted, represented as a hexadecimal string.</param>
/// <returns>The decrypted string, represented as a hexadecimal string.</returns>
publicstringDecrypt(stringcipherText)
{
// Perform 16 rounds of the blowfish algorithm on the cipherText in reverse order.
for(vari=17;i>1;i--)
{
cipherText=Round(i,cipherText);
}
// Swap the left and right halves of the cipherText.
varleft=cipherText.Substring(8,8);
varright=cipherText.Substring(0,8);
// XOR the left half with the first subkey from the P-array.
left=Xor(left,p[0]);
// XOR the right half with the second subkey from the P-array.
right=Xor(right,p[1]);
// Return the decrypted string as a concatenated string.
returnleft+right;
}
/// <summary>
/// Converts a hexadecimal string to a binary string.
/// </summary>
/// <param name="hex">The hexadecimal string to convert.</param>
/// <returns>A multiple of 4 binary string representing the hexadecimal input.</returns>
privatestringHexadecimalToBinary(stringhex)
{
returnhex.Select(t =>
// Convert each character to an integer using base 16
Convert.ToString(Convert.ToInt32(t.ToString(),16),2))
// Pad each binary string with leading zeros to make it 4 bits long
.Select(fourBitBinary =>fourBitBinary.PadLeft(4,'0'))
// Concatenate all the binary strings into one
.Aggregate(string.Empty,(current,fourBitBinary)=>current+fourBitBinary);
}
/// <summary>
/// Converts a binary string to a hexadecimal string.
/// </summary>
/// <param name="binaryInput">The multiple of 4 binary string to convert.</param>
/// <returns>A hexadecimal string representing the binary input.</returns>
privatestringBinaryToHexadecimal(stringbinaryInput)
{
returnstring.Concat(
Enumerable.Range(0,binaryInput.Length/4)
// Select each group of 4 bits
.Select(index =>binaryInput.Substring(index*4,4))
// Convert each group to an integer using base 2
.Select(fourBitBinary =>Convert.ToInt32(fourBitBinary,2)
// Convert each integer to a hexadecimal character using base 16
.ToString("x")));
}
/// <summary>
/// Performs a bitwise XOR operation on two hexadecimal strings and returns the result.
/// </summary>
/// <param name="left">The first hexadecimal string to XOR.</param>
/// <param name="right">The second hexadecimal string to XOR.</param>
/// <returns>A hexadecimal string representing the XOR of the inputs.</returns>
privatestringXor(stringleft,stringright)
{
// Convert the hexadecimal strings to binary strings using a helper method
left=HexadecimalToBinary(left);
right=HexadecimalToBinary(right);
varxor=newStringBuilder();
// Loop through each bit in the binary strings
for(vari=0;i<left.Length;i++)
{
// Perform a bitwise XOR operation on the corresponding bits and append the result to xor
xor.Append((char)(((left[i]-'0')^(right[i]-'0'))+'0'));
}
// Convert the binary string to a hexadecimal string
varresult=BinaryToHexadecimal(xor.ToString());
returnresult;
}
/// <summary>
/// Adds two hexadecimal strings and returns the result modulo _modVal.
/// </summary>
/// <param name="left">The first hexadecimal string to add.</param>
/// <param name="right">The second hexadecimal string to add.</param>
/// <returns>A hexadecimal string representing the sum of the inputs modulo _modVal.</returns>
privatestringAddAndMod(stringleft,stringright)
{
// Convert the hexadecimal strings to unsigned 64-bit integers using base 16
varleftNumber=Convert.ToUInt64(left,16);
varrightNumber=Convert.ToUInt64(right,16);
// Add the two integers and calculate the remainder after dividing by _modVal
vartotal=(leftNumber+rightNumber)%ModVal;
// Convert the result to a hexadecimal string using base 16
varresult=total.ToString("x");
// Pad the result with leading zeros to make it 8 characters long
result="00000000"+result;
// Return the last 8 characters of the result
returnresult[^8..];
}
/// <summary>
/// Performs the F function on a 32-bit input and returns a 32-bit output.
/// </summary>
/// <param name="plainText">The 32-bit hexadecimal input to the F function.</param>
/// <returns>The 32-bit hexadecimal output of the F function.</returns>
/// <remarks>
/// The F function is a non-linear function that operates on a 32-bit input and produces a 32-bit output. It is used
/// to generate the sub-keys and to perform the encryption and decryption of the data blocks.
/// </remarks>
privatestringF(stringplainText)
{
vara=newstring[4];
for(vari=0;i<8;i+=2)
{
varcol=Convert.ToUInt64(HexadecimalToBinary(plainText.Substring(i,2)),2);
a[i/2]=s[i/2][col];
}
varanswer=AddAndMod(a[0],a[1]);
answer=Xor(answer,a[2]);
answer=AddAndMod(answer,a[3]);
returnanswer;
}
/// <summary>
/// Performs one round of the blowfish encryption on a 64-bit block of data.
/// </summary>
/// <param name="feistelRound">The round number, from 0 to 15, indicating which subkey from the P-array to use.</param>
/// <param name="plainText">The 64-bit block of data to be encrypted or decrypted, represented as a hexadecimal string.</param>
/// <returns>The encrypted or decrypted block of data, represented as a hexadecimal string.</returns>
privatestringRound(intfeistelRound,stringplainText)
{
// Split the plainText into two 32-bit halves.
varleft=plainText[..8];
varright=plainText.Substring(8,8);
// XOR the left half with the subkey from the P-array.
left=Xor(left,p[feistelRound]);
// Apply the F function to the left half.
varfOutput=F(left);
// XOR the output of the F function with the right half.
right=Xor(fOutput,right);
// Swap the left and right halves and return them as a concatenated string.
returnright+left;
}
}