R

Spacecraft Flight Software
Design Patterns Discovery

Michael Phillips — Lockheed Martin Fellow, R&D Principal Investigator
Amy Mok — Lockheed Martin, R&D Technical Lead

© 2013 Lockheed Martin Corporation. All Rights Reserved.

Overview
— Business Case
— Introduction of the R&D Project
COT Tools for Pattern Detection
— Diagrams
— Metrics
— Sample Usage
Sample Results
Obstacles & Challenges

Summary

Business Case for SW Reference Designs %’

Program A FSW SLOC History Program B FSW Component SLOC History Program B Bootstrap SLOC History

35,000

50,000 30,000
25,000
20,000
20,000 -
wReuss EReuse
4 20,000
@ EMod @ Mod
N 15,000 -
naw g ENew
20,000
10,000 -
10000
5,000 -
o : : ! L
Fropossl FOR coR

Proposal siar

£0,000

SLOC

o

Observations BEEEEEN Mod Hypothesis
1.Software Estimates for NEW code have 1. A significant portion of NEW Software
significant growth from program developed on programs is very similar in

proposal, through PDR/CDR, and to final
implementation

2. Software Estimates for code reuse
(Modified + Untouched) migrates rapidly

design to other programs
2. Most NEW software (code) is preceded by a
corresponding SW Design Activity

from ReUse (100% untouched) to 3. Programs are efficient at implementing SW to
Modified to New during a program program-unique standards given a mature
lifecycle design

‘ Providing SW Development teams and individual SW Engineers with validated heritage reference
designs for common capabilities will lead to improved productivity

Identifying and proliferating Best Practice reference designs will lead to more commonality across
our spacecraft FSW product lines and variants

Reference Designs for future SW product i
0ols for design pattern discovery

Discover Common Design Patterns across existing TRL9 Spacecraft Flight Software using COTS Tools.
Implement, Test, and Deliver TRL 4 FSW Modules for FSW Reference Designs in a few domain areas
commonly re-designed and re-implemented during programs.

UML What is a Design Pattern?
Unified Ta.|sk 1 A DB SRl Ly * A software pattern is a portion of a end
. Discovery 9 product that is repeated or replicated

in multiple SW products, where the

Task 2: Develop Best Practice SW

Reference Designs
products and or introduced
independently during software design

Modeling
4 Language
software products may be modeling
products and or source code products.
Task 3: Implement, Test, and Deliver TRL when software engineers choose
4 FSW Modules similar or identical solutions to
AT eeeeeeeeeeeeeeeeeeeeeeeee—"—"—————
implement similar functionality.

 Patterns are architected into software

Requirements' Integration & ‘
Definition Test

of Software Patterns

Architecture Patterns:

— Patterns applied across all software domains

+ “Base” classes used or extended by each domain
Patterns for creating constants, parameters and variables
Patterns for creating command and telemetry messages
Patterns for creating initialization and processing threads
Patterns for fault management

Functional Patterns:

— Patterns identified within multiple software baselines
* Requirements common to multiple software designs
* Functionality common to multiple software designs

Logic and Algorithm Patterns:

— Patterns identified within multiple software baselines
* Processing threads common to multiple software designs
+ Algorithms common to multiple software designs
« Equations common to multiple software designs

Implementation Patterns :
— Patterns applied within one or more software domain

St alcion Mot = VIT W]

Gt Sate0f. Crare Vol

* Modeling or coding solutions to implement logic, algorithms, and equations

+ C++ Templates / Ada Generics
* Generalization & Extension

wwwwwwwwwwwwwwwwww

Se Mol Bater Chare ke

void Operation_Name()

executable statements

e Cases & 2013 Pilots

Program A toae ReverSe-Engineered DeSign Next Generation Program A
SWE Central Function for Enterprise Commonality

Future
Program A

Future
Program B
Documents/Model
Future
I
—

| h = | 5 — : Program C

Reverse-Engineered Design

The R&D return is achieved through shorter software development cycle and

Future
Program D

increase of design reuse (i.e., commonality)

Tools Selected to aid in

Pr-
Tool Name Vendor
Axivion Bauhaus Suite Axivion
Together Borland
Imagix 4D Imagix
LDRA Testbed LDRA Software Technology
McCabe IQ McCabe Software
C/C++ Test Parasoft
Ptidej FOSS
Sotoarc / Sotograph Hello2morrow
UMLStudio Pragsoft
Understand SciTools
Visual Paradigm Visual Paradigm
Rhapsody IBM

apabilities Matrix

Pattern Reverse Engineered Reverse Supported

Detection Diagrams Engineering Languages

2 o) >

2 5| 2 G A R -

b 5 D 2 © g n 5 S Q Q

= 2 = > e = Q 8 = € =

= s| 5§ & & a B 2 3 % g £ +

S o Q o S fe

< Al < S @ o o O 5 =2 o S]
Together X X X X X X X
Imagix4D X X X X X X X X X X X X
LDRA X X X X X X X X
McCabe IQ X X X X X X X X X X X X
C/C++ Test X X X X X
UMLStudio X X X X X X X
Ptidej X X X X X
Sotoarc / Sotograph X X X X X X X
Understand X X X X X X X X X X
Visual Paradigm X X X X X X X X
Rhapsody X X X X X X

Class

Domain Class Diagram

“Software_Domain»
Logical_Architecture_Domain

Attributes
[=l command_uffer:int

[= status_Log:int

|= Dormain_Global_Variable_1:int

= Domain_Global_Variable_2:int

Function Call

scan

|=! Dormain_Global_Variable_3:int

Amaylist
TraininglmageLoader. ol
load

Operations

= bomain_Unique_Processing_Thread_1():void

L initialize():void
= Process_Command():void

[Health_And_Status():void

Il omain_unique__Processing_Thread_2():void ,

DecumentScanner.
processRow

ArrayList,
= size
slica

; | Pomain_component_1

|l Domain_Unique_Processing_Thread_3():void

= Tags

“# ABR:RhpString
“# Developer_Organization:Organization_Enum

& Domain_Specific_Language:Domain_Specific_Language_Enum

== Maximum_Rate_Group:Hz_Enum
=% MDA_Layer:Model_Driven_Architecture_Enum

== Minimum_Rate_Group:Hz_Enum

CharacterTracer.

getTracedimage

LineExtractor.

slice.

; | Domain_component_2

= NUM:RhpInteger

=& Percent_Modified_Development:Percent
=& Percent_New_Development:Percent
“& Percent_Reuse_Development:Percent

Depencdlency

Test Dependency

Test_ Dependencylsecand h

Test Dependencythird h

Tes!_Dependencylmain.cop -_._________2__________-_’
Test_Dependencylfisth
-

3 Test_Dependencylsubdi

T Depercysibtvhee 1 4 Tes!_Dependencylsubdiriwhath —1- Tes!_Dependencylsubdiwhoh

AspectRaticOCR

scan

e
¥

ey [mpee—

Extracted from Code

Metrics Show:

* Indication of which code baselines
should be used to develop the
reference design

 (Quantitative differences between the
multiple code baselines

e Assurance of the quality of the
reference design that will be
distributed

Some Examples:

Complexity (Cyclomatic, Essential,
Halstead)

* Difficulty in understanding,
implementing, and testing
decision logic

(Lack of) Cohesion

* How related the functions and

functionality of a module are.
Coupling

* Degree to which each module

relies on other modules
Depth of Inheritance

 How deeply modules inherit

from each other
SLOC

* Amount of code necessary to

implement functionality
Many more...

10

Inputs:

- Source Code

- Models

- Requirements

- CDRL Documentation

Use Metrics:
Characterize individual patterns
Use Trade Study Tool:

To compare different patterns
for the same functions

l

Select Tools

v

Discover Patterns

Evaluate Patterns

A4

Implement Patterns

Deploy Patterns

o

Source Code Analysis Tool Suite

All Patterns Identified

Preferred Coded Patterns

Preferred Modeled Patterns

CM’ed Pattern Product Pkgs.

11

Sample Detalled Design — Class Diagrams

Domain Class Diagram

«Software_Domain»
Logical_Architecture_Domain

Attributes
:Conmand_Buffer:int
= Status_Logint
= Domein_Global_Variable_L:int
=] Domain_Giobal_Variable_2:int
H Domain_Global_Variable_3:int

in_Command

™

Reverse Engineered Design

Command_1

Command_2

(bmmand}\

Operations
:| Domain_Unique_Processing_Thread_1():void
[ntiaize():void
:| Process_Command():void
:| Health_And_Status():void
:| Domain_Unique_Processing_Thread_2():void
:| Domain_Unique_Processing_Thread_3():void

Domain_Component_1

= Tags

"% ABR:RhpString

' Developer_Organization:Organization_Enum
' Domain_Specific_Language:Domain_Specific_Language_Enum
& Maximum_Rate_Group:Hz_Enum

"% MDA_Layer:Model_Driven_Architecture_Enum
' Minimum_Rate_Group:Hz_Enum

' NUM:RhpInteger

' Percent_Modified_Development:Percent

' Percent_New_Development:Percent

' Percent_Reuse_Development:Percent

_M

Class Name 1
+ attributes
+ operations

Class Split Apart

T

Class Name 2
+ attributes
+ operations

Composition

Generalization -

Class Name 3

Domain_Component_2

-

Class Name 4
+ attributes
+ operations

N\

+ attributes
+ operations

Class Name 4

+ attributes
+ operations

JAN

Class Name 5
+ attributes
+ operations

Class Name 6
+ attributes
+ operations

Class Name 7
+ attributes
+ operations

End User Artifacts: SW Architecture Diagrams - Differences between planned and actual can be discovered

providing users with correct design for review and implementation

Sample Detalled Desigh — Behavior Diagrams ﬁ

Reverse Engineered Design
Class 1 Class 2 9 /o

loop

alt

OP'CE \{

End User Artifacts: SW Logic/Algorithm Diagrams - Represents actual, detailed,
unambiguous, and straightforward views of the software design

13

Sample Requirement Traceability

e SRSO001 - FSW shall ... — S

* SRS0002 — FSW shall ...

SRS0003 — FSW shall ... \

’ End User Artifacts: Mapping to SW Requirements — Ability to easily map requirements to
design, allowing program to determine new, modified, or reuse of SW design

sram Usage of Functionalities i

s

| [Charge_Control_Mode = Auto_CCMode] [Charge_Control_Mode = Manual_CCMode]

(Process_Se'rsor_Inputs ‘
cL

[State_Calculation_Mode = VIT_Mode] A= [State_Calculation_Mode = V_Mode]

[State_Calculation_Mode = AHI_Mode

Calculate_State_Of_Charge_Voltage_Current_T em perature ‘ Calculate_State_Of_Charge_Amp_Hour_Integration ‘ [’ Calculate_State_Of_Charge_Voltage ‘

Set_Manual_Battery_Charge_Rate ‘

HN |

(Calculate_Battery_Charge_Rate ’ ’

-

- Program A

(Charge_Batteries ‘

s

Functionalities that most programs had implemented represent critical functions

Functionalities that only a few programs had implemented represent mission-
unique functions

es & Challenges

Usually difficult to obtain FSW and FSW Design Artifacts from
heritage programs
— Each program has their own process, priorities, time table, and restrictions

Creating common designs can be tedious (the tools help greatly,
but it’s still a manual process)

Program-specific design decisions must be filtered out from the
common design

Lots of interest for derived designs of a single heritage program, but
need more interest in the designs derived from multiple heritage
programs

Comparing different designs can be subjective and difficult as each
design has different capabilities

16

We believe there is significant room to improve the productivity of
the Flight Software Team by leveraging design reuse from existing
programs

COTS tools have a tremendous capabillity to efficiently reverse-
engineer both software design and metrics that can augment
program design artifacts

— These tools have limitations that require both processes and manual effort to
effectively use the artifacts produced by the tools

— In some cases, the reverse-engineered design is more factual than the existing
design artifacts, since it was derived for the actual implementation, not the
planned implementation

Providing reference design information to both individual
contributors for specific SW domains, as well FSW technical leads
and managers, needs to be organizationally institutionalized in order
to effectively improve productivity on programs

17

