The Transistor

Thomas J. Bergin ©Computer History Museum American University

- In the nineteenth century, scientists were rarely inventors: Samuel F.B. Morse, Alexander Graham Bell, Thomas Alva Edison
- In the twentieth century, scientists invaded the domain of invention: John Fleming invented the vacuum diode tube and Lee De Forest invented the triode tube
- The transistor can be viewed, as can the laser, as an invention of physicists.
 - Source: Bunch and Hellemans, *The Timetables of Technology*, Simon and Schuster, 1993

William B. Shockley (1910-1989)

- Known as the "Father of the Transistor"
- joined Bell Labs in 1936 in the vacuum tube department (solid state physicist)
- Moved to the semiconductor laboratory:

- "It has today occurred to me that an amplifier using semiconductors rather than vacuum tubes is in principle possible."

William B. Shockley

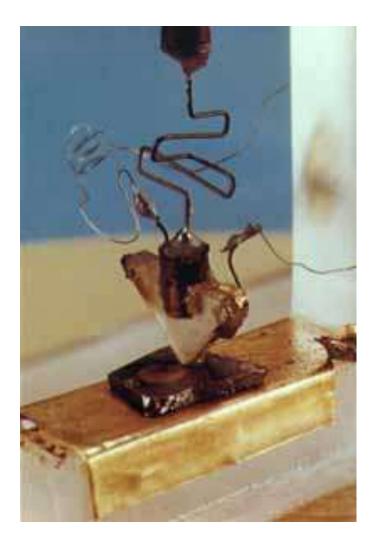
Walter Houser Brattain

- Experimental physicist who also worked on vacuum tubes
- Joined Shockley and Bardeen in semiconductor research.

Walter Houser Brattain

John Bardeen (1908-1991)

- Physicist, Naval Ordnance Laboratory 1941-1945
- Research Physicist, Bell Telephone Laboratories 1945-1951 (theorist)
- Professor of Electrical Engineering,
 University of Illinois, 1951-1978
- Nobel Prize in Physics: 1956 and 1972
 - transistor (1956) and superconductivity (1972)
 - "I knew the transistor was important, but I never foresaw the revolution in electronics it would bring."


John Bardeen

Nobel Prize in 1956

- Shockley, Brattain and Bardeen start working with p- and n- type germanium and silicon semiconductors in 1946
- Bardeen and Brattain put together the first transistor in December 1947:
 - a point-contact transistor consisting of a single germanium crystal with a p- and an n- zone. Two wires made contact with the crystal near the junction between the two zones like the "whiskers" of a crystal-radio set.

Point-contact-transistor

- Shockley immediately set out to define the effects that they had observed, i.e., to explain the physics of transistors
- A few months later, Shockley devised the junction transistor, a true solid-state device which did not need the "whiskers" of the point-contact transistor.
- AT&T licensed the transistor very cheaply to other manufacturers and waived patent rights for the use of transistors in hearing aids, in the spirit of its founder, Alexander Graham Bell

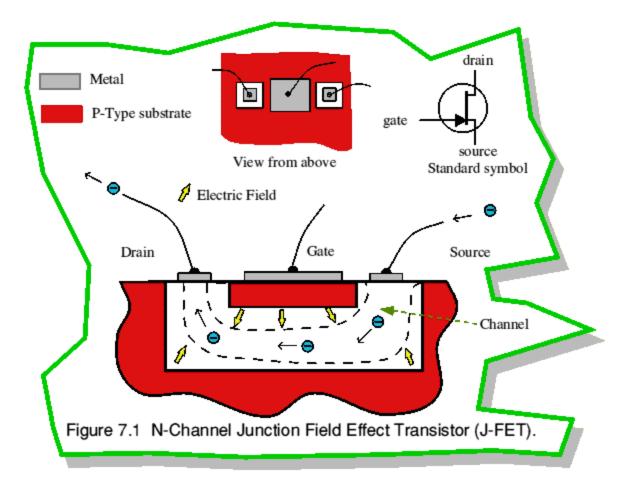
Shockley's sandwitch transistor

Manufacturing transistors on a chip

• Shockley Semiconductor Laboratories,

Palo Alto, CA (1954)

- the beginnings of "Silicon Valley"
- Fairchild Semiconductors founded in Mountain View, CA (1957) by eight Shockley employees including Gordon Moore and Robert Noyce
- Bell Labs had made several improvements in the manufacturing of crystals of silicon and germanium with the impurities needed to create semiconductors


Meanwhile....

- Jack Kilby worked for Texas Instruments
- Conceived of a manufacturing method that allowed the miniaturization of electronic circuits on semiconductor chips, called integrated circuits or ICs.
- Kilby had reduced the transistor to the size of a match head
- Texas Instruments sold these for \$450.

And at Fairchild....

- Noyce adapted a system called "planar" manufacturing, in which all the transistors and resistors were formed together on a silicon chip with the metal wiring embedded in the silicon.
- Noyce filed for a patent five months after TI
- Lawsuit: TI claimed patent infringement; TI lost but companies needed licenses from both companies.
 - source: Shurkin, Engines of the Mind, 1984

Field Effect Transistor (Lucent)

• Due to improvements in manufacturing, integrated circuits became smaller and smaller

- Gordon Moore observed that "the number of transistors on a chip seems to double every year...."
 - Moore's Law: the number of transistors on a chip seems to double every 18 months, while the price remains the same.
 - Grosch's law for mainframes: every year, the power of computers doubles while the price is cut in half

A Little Economic Sociology

- No matter how rich you are working for someone else, think of how rich you could be if you worked for yourself!
- People figured out quickly that one could bolt from one company, and with enough science, engineering and venture capital start a new company down the street.
- Silicon Valley grew and grew and grew!
 source: Shurkin, *Engines of the Mind*, 1984

Bergin's musings....

- The greatest deterrent to success is success!
- Large companies tend to be conservative and bureaucratic with lengthy approval processes which stifle new ideas.
- Small companies have no history, they need to take risks and they have no stockholders to answer to: Apple, Osborne, etc.
- Starting technology companies became the new gold rush (and it was in California!)

Intel

• Noyce, Moore, and Andrew Grove leave Fairchild and found Intel in 1968

- focus on random access memory (RAM) chips

- Question: if you can put transistors, capacitors, etc. on a chip, why couldn't you put a central processor on a chip?
- Ted Hoff designs the Intel 4004, the first microprocessor in 1969
 - based on Digital's PDP-8

Intel processors

•	CPU	Year	Data Memory	MIPS
---	-----	------	-------------	------

- 4004 1971 4 1K
- 8008 1972 8 16K
- 8080 1974 8 64K
- 8088 1980 8 1M .33
- 80286 1982 16 1M 3
- 80386 1985 32 4G 11
- 80486 1989 32 4G
- Pentium 1993 64 4G 111

41

Altair 8800 Computer

Microcomputers

- Ed Roberts founds Micro Instrumentation Telemetry Systems (MITS) in 1968
- *Popular Electronics* puts the MITS *Altair* on the cover in January 1975 [nee PE-8, Intel 8080]
- Les Solomon's 12 year old daughter, Lauren, was a lover of *Star Trek*. He asked her what the name of the computer on the *Enterprise* was. She said " 'computer' but why don't you call it *Altair* because that is where they are going tonight!"

References

- Photos courtesy of Lucent Technologies and other web sources
- Bunch and Hellemans, *The Timetables of Technology*, Simon and Schuster, 1993
- Lee, Computer Pioneers, IEEE Press, 1995
- Freiberger and Swaine, *Fire in the Valley: The Making of the Personal Computer*, Osborne/McGraw-Hill, 1984