
INV ITED
P A P E R

Recent Advances of Large-Scale
Linear Classification
This paper is a survey on development of optimization methods to construct linear

classifiers suitable for large-scale applications; for some data, accuracy is

close to that of nonlinear classifiers.

By Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin, Fellow IEEE

ABSTRACT | Linear classification is a useful tool in machine

learning and data mining. For some data in a rich dimensional

space, the performance (i.e., testing accuracy) of linear classi-

fiers has shown to be close to that of nonlinear classifiers such

as kernel methods, but training and testing speed is much

faster. Recently, many research works have developed efficient

optimization methods to construct linear classifiers and ap-

plied them to some large-scale applications. In this paper, we

give a comprehensive survey on the recent development of this

active research area.

KEYWORDS | Large linear classification; logistic regression;

multiclass classification; support vector machines (SVMs)

I . INTRODUCTION

Linear classification is a useful tool in machine learning

and data mining. In contrast to nonlinear classifiers such

as kernel methods, which map data to a higher dimen-

sional space, linear classifiers directly work on data in the

original input space. While linear classifiers fail to handle

some inseparable data, they may be sufficient for data in a

rich dimensional space. For example, linear classifiers

have shown to give competitive performances on docu-

ment data with nonlinear classifiers. An important ad-

vantage of linear classification is that training and testing

procedures are much more efficient. Therefore, linear

classification can be very useful for some large-scale appli-

cations. Recently, the research on linear classification has

been a very active topic. In this paper, we give a compre-
hensive survey on the recent advances.

We begin with explaining in Section II why linear

classification is useful. The differences between linear and

nonlinear classifiers are described. Through experiments,

we demonstrate that for some data, a linear classifier

achieves comparable accuracy to a nonlinear one, but both

training and testing times are much shorter. Linear clas-

sifiers cover popular methods such as support vector
machines (SVMs) [1], [2], logistic regression (LR),1 and

others. In Section III, we show optimization problems of

these methods and discuss their differences.

An important goal of the recent research on linear

classification is to develop fast optimization algorithms for

training (e.g., [4]–[6]). In Section IV, we discuss issues in

finding a suitable algorithm and give details of some

representative algorithms. Methods such as SVM and LR
were originally proposed for two-class problems. Although

past works have studied their extensions to multiclass

problems, the focus was on nonlinear classification. In

Section V, we systematically compare methods for multi-

class linear classification.

Linear classification can be further applied to

many other scenarios. We investigate some examples in

Section VI. In particular, we show that linear classifiers
can be effectively employed to either directly or indirectly

approximate nonlinear classifiers. In Section VII, we

Manuscript received June 16, 2011; revised November 24, 2011; accepted February 3,

2012. Date of publication March 30, 2012; date of current version August 16, 2012.

This work was supported in part by the National Science Council of Taiwan under

Grant 98-2221-E-002-136-MY3.

G.-X. Yuan was with the Department of Computer Science, National Taiwan University,

Taipei 10617, Taiwan. He is currently with the University of California Davis, Davis,

CA 95616 USA (e-mail: r96042@csie.ntu.edu.tw).

C.-H. Ho and C.-J. Lin are with the Department of Computer Science, National

Taiwan University, Taipei 10617, Taiwan (e-mail: b95082@csie.ntu.edu.tw;

cjlin@csie.ntu.edu.tw).

Digital Object Identifier: 10.1109/JPROC.2012.2188013

1It is difficult to trace the origin of logistic regression, which can be
dated back to the 19th century. Interested readers may check the
investigation in [3].

2584 Proceedings of the IEEE | Vol. 100, No. 9, September 2012 0018-9219/$31.00 �2012 IEEE

discuss an ongoing research topic for data larger than
memory or disk capacity. Existing algorithms often fail to

handle such data because of assuming that data can be

stored in a single computer’s memory. We present some

methods which try to reduce data reading or communi-

cation time. In Section VIII, we briefly discuss related

topics such as structured learning and large-scale linear

regression.

Finally, Section IX concludes this survey paper.

II . WHY IS LINEAR
CLASSIFICATION USEFUL?

Given training data ðyi; xiÞ 2 f�1;þ1g �Rn, i ¼ 1; . . . ; l,
where yi is the label and xi is the feature vector, some

classification methods construct the following decision

function:

dðxÞ � wT�ðxÞ þ b (1)

where w is the weight vector and b is an intercept, or
called the bias. A nonlinear classifier maps each instance x
to a higher dimensional vector �ðxÞ if data are not lin-

early separable. If �ðxÞ ¼ x (i.e., data points are not

mapped), we say (1) is a linear classifier. Because nonlin-

ear classifiers use more features, generally they perform

better than linear classifiers in terms of prediction

accuracy.

For nonlinear classification, evaluating wT�ðxÞ can be
expensive because �ðxÞ may be very high dimensional.

Kernel methods (e.g., [2]) were introduced to handle

such a difficulty. If w is a linear combination of training

data, i.e.,

w �
Xl

i¼1

�i�ðxiÞ; for some A 2 Rl (2)

and the following kernel function can be easily calculated:

Kðxi; xjÞ � �ðxiÞT�ðxjÞ

then the decision function can be calculated by

dðxÞ �
Xl

i¼1

�iKðxi; xÞ þ b (3)

regardless of the dimensionality of �ðxÞ. For example

Kðxi; xjÞ � xTi xj þ 1
� �2

(4)

is the degree-2 polynomial kernel with

�ðxÞ ¼ 1;
ffiffiffi
2
p

x1; . . . ;
ffiffiffi
2
p

xn; . . . x
2
1 ; . . . x

2
n;

ffiffiffi
2
p

x1x2;
h

ffiffiffi
2
p

x1x3; . . . ;
ffiffiffi
2
p

xn�1xn

i
2 Rðnþ2Þðnþ1Þ=2: (5)

This kernel trick makes methods such as SVM or kernel LR

practical and popular; however, for large data, the training

and testing processes are still time consuming. For a kernel

like (4), the cost of predicting a testing instance x via (3)
can be up to OðlnÞ. In contrast, without using kernels, w is

available in an explicit form, so we can predict an instance

by (1). With �ðxÞ ¼ x

wT�ðxÞ ¼ wTx

costs only OðnÞ. It is also known that training a linear

classifier is more efficient. Therefore, while a linear clas-

sifier may give inferior accuracy, it often enjoys faster
training and testing.

We conduct an experiment to compare linear SVM and

nonlinear SVM [with the radial basis function (RBF) ker-

nel]. Table 1 shows the accuracy and training/testing time.

Generally, nonlinear SVM has better accuracy, especially

for problems cod-RNA,2 ijcnn1, covtype, webspam,

and MNIST38. This result is consistent with the theoret-

ical proof that SVM with RBF kernel and suitable
parameters gives at least as good accuracy as linear kernel

[10]. However, for problems with large numbers of fea-

tures, i.e., real-sim, rcv1, astro-physic, yahoo-japan,

and news20, the accuracy values of linear and nonlinear

SVMs are similar. Regarding training and testing time,

Table 1 clearly indicates that linear classifiers are at least an

order of magnitude faster.

In Table 1, problems for which linear classifiers yield
comparable accuracy to nonlinear classifiers are all docu-

ment sets. In the area of document classification and

natural language processing (NLP), a bag-of-word model

is commonly used to generate feature vectors [11]. Each

feature, corresponding to a word, indicates the existence

2In this experiment, we scaled cod-RNA feature wisely to ½�1; 1�
interval.

Yuan et al. : Recent Advances of Large-Scale Linear Classification

Vol. 100, No. 9, September 2012 | Proceedings of the IEEE 2585

of the word in a document. Because the number of fea-

tures is the same as the number of possible words, the

dimensionality is huge, and the data set is often sparse. For

this type of large sparse data, linear classifiers are very

useful because of competitive accuracy and very fast train-

ing and testing.

III . BINARY LINEAR
CLASSIFICATION METHODS

To generate a decision function (1), linear classification

involves the following risk minimization problem:

min
w;b

fðw; bÞ � rðwÞ þ C
Xl

i¼1

�ðw; b; xi; yiÞ (6)

where rðwÞ is the regularization term and �ðw; b; x; yÞ is

the loss function associated with the observation ðy; xÞ.
Parameter C > 0 is user specified for balancing rðwÞ and

the sum of losses.

Following the discussion in Section II, linear classifi-

cation is often applied to data with many features, so the
bias term b may not be needed in practice. Experiments in

[12] and [13] on document data sets showed similar

performances with/without the bias term. In the rest of

this paper, we omit the bias term b, so (6) is simplified to

min
w

fðwÞ � rðwÞ þ C
Xl

i¼1

�ðw; xi; yiÞ (7)

and the decision function becomes dðxÞ � wTx.

A. Support Vector Machines and Logistic Regression
In (7), the loss function is used to penalize a wrongly

classified observation ðx; yÞ. There are three common

loss functions considered in the literature of linear

classification

�L1ðw; x; yÞ � maxð0; 1� ywTxÞ (8)

�L2ðw; x; yÞ � max ð0; 1� ywTxÞ2 (9)

�LRðw; x; yÞ � log 1þ e�yw
Tx

� �
: (10)

Equations (8) and (9) are referred to as L1 and L2 losses,

respectively. Problem (7) using (8) and (9) as the loss

function is often called L1-loss and L2-loss SVM, while
problem (7) using (10) is referred to as logistic regression

(LR). Both SVM and LR are popular classification meth-

ods. The three loss functions in (8)–(10) are all convex and

nonnegative. L1 loss is not differentiable at the point

ywTx ¼ 1, while L2 loss is differentiable, but not twice

differentiable [14]. For logistic loss, it is twice differentia-

ble. Fig. 1 shows that these three losses are increasing

functions of �ywTx. They slightly differ in the amount of
penalty imposed.

B. L1 and L2 Regularization
A classifier is used to predict the label y for a hidden

(testing) instance x. Overfitting training data to minimize

Fig. 1. Three loss functions: �L1, �L2, and �LR . The x-axis is �ywTx.

Table 1 Comparison of Linear and Nonlinear Classifiers. For Linear, We Use the Software LIBLINEAR [7], While for Nonlinear We Use LIBSVM [8]

(RBF Kernel). The Last Column Shows the Accuracy Difference Between Linear and Nonlinear Classifiers. Training and Testing Time Is in Seconds.

The Experimental Setting Follows Exactly From [9, Sec. 4]

Yuan et al. : Recent Advances of Large-Scale Linear Classification

2586 Proceedings of the IEEE | Vol. 100, No. 9, September 2012

the training loss may not imply that the classifier gives the
best testing accuracy. The concept of regularization is

introduced to prevent from overfitting observations. The

following L2 and L1 regularization terms are commonly

used:

rL2ðwÞ �
1

2
kwk2

2 ¼
1

2

Xn
j¼1

w2
j (11)

and

rL1ðwÞ � kwk1 ¼
Xn
j¼1

jwjj: (12)

Problem (7) with L2 regularization and L1 loss is the

standard SVM proposed in [1]. Both (11) and (12) are

convex and separable functions. The effect of regulariza-

tion on a variable is to push it toward zero. Then, the

search space of w is more confined and overfitting may be

avoided. It is known that an L1-regularized problem can

generate a sparse model with few nonzero elements in w.

Note that w2=2 becomes more and more flat toward zero,
but jwj is uniformly steep. Therefore, an L1-regularized

variable is easier to be pushed to zero, but a caveat is that

(12) is not differentiable. Because nonzero elements in w
may correspond to useful features [15], L1 regularization

can be applied for feature selection. In addition, less

memory is needed to store w obtained by L1 regularization.

Regarding testing accuracy, comparisons such as [13,

Suppl. Mater. Sec. D] show that L1 and L2 regularizations
generally give comparable performance.

In statistics literature, a model related to L1 regular-

ization is LASSO [16]

min
w

Xl

i¼1

�ðw; xi; yiÞ

subject to kwk1 � K (13)

where K > 0 is a parameter. This optimization problem is

equivalent to (7) with L1 regularization. That is, for a given

C in (7), there exists K such that (13) gives the same

solution as (7). The explanation for this relationship can be

found in, for example, [17].

Any combination of the above-mentioned two regular-

izations and three loss functions has been well studied in

linear classification. Of them, L2-regularized L1/L2-loss

SVM can be geometrically interpreted as maximum margin

classifiers. L1/L2-regularized LR can be interpreted in a

Bayesian view by maximizing the posterior probability

with Laplacian/Gaussian prior of w.

A convex combination of L1 and L2 regularizations
forms the elastic net [18]

reðwÞ � �kwk2
2 þ ð1� �Þkwk1 (14)

where � 2 ½0; 1Þ. The elastic net is used to break the

following limitations of L1 regularization. First, L1 regu-

larization term is not strictly convex, so the solution may
not be unique. Second, for two highly correlated features,

the solution obtained by L1 regularization may select only

one of these features. Consequently, L1 regularization

may discard the group effect of variables with high

correlation [18].

IV. TRAINING TECHNIQUES

To obtain the model w, in the training phase we need to

solve the convex optimization problem (7). Although many

convex optimization methods are available, for large linear
classification, we must carefully consider some factors in

designing a suitable algorithm. In this section, we first

discuss these design issues and follow by showing details of

some representative algorithms.

A. Issues in Finding Suitable Algorithms

• Data property. Algorithms that are efficient for

some data sets may be slow for others. We must

take data properties into account in selecting algo-

rithms. For example, we can check if the number

of instances is much larger than features, or
vice versa. Other useful properties include the

number of nonzero feature values, feature distri-

bution, feature correlation, etc.

• Optimization formulation. Algorithm design is

strongly related to the problem formulation. For

example, most unconstrained optimization tech-

niques can be applied to L2-regularized logistic

regression, while specialized algorithms may be
needed for the nondifferentiable L1-regularized

problems.

In some situations, by reformulation, we are

able to transform a nondifferentiable problem to

be differentiable. For example, by letting w ¼
wþ � w� ðwþ;w� � 0Þ, L1-regularized classifiers

can be written as

min
wþ;w�

Xn
j¼1

wþj þ
Xn
j¼1

w�j þ
Xl

i¼1

�ðwþ � w�; xi; yiÞ

subject to wþj ;w
�
j � 0; j ¼ 1; . . . ; n: (15)

Yuan et al. : Recent Advances of Large-Scale Linear Classification

Vol. 100, No. 9, September 2012 | Proceedings of the IEEE 2587

However, there is no guarantee that solving a dif-
ferentiable form is faster. Recent comparisons [13]

show that for L1-regularized classifiers, methods

directly minimizing the nondifferentiable form are

often more efficient than those solving (15).

• Solving primal or dual problems. Problem (7) has n
variables. In some applications, the number of in-

stances l is much smaller than the number of fea-

tures n. By Lagrangian duality, a dual problem of
(7) has l variables. If l� n, solving the dual form

may be easier due to the smaller number of varia-

bles. Further, in some situations, the dual problem

possesses nice properties not in the primal form.

For example, the dual problem of the standard

SVM (L2-regularized L1-loss SVM) is the following

quadratic program3:

min
A

f DðAÞ � 1

2
ATQA� eTA

subject to 0 � �i � C 8i ¼ 1; . . . ; l (16)

where Qij � yiyjxTi xj. Although the primal objective

function is nondifferentiable because of the L1

loss, in (16), the dual objective function is smooth

(i.e., derivatives of all orders are available). Hence,

solving the dual problem may be easier than primal
because we can apply differentiable optimization

techniques. Note that the primal optimal w and the

dual optimal A satisfy the relationship (2),4 so

solving primal and dual problems leads to the same

decision function.

Dual problems come with another nice property

that each variable �i corresponds to a training

instance ðyi; xiÞ. In contrast, for primal problems,
each variable wi corresponds to a feature. Optimi-

zation methods which update some variables at a

time often need to access the corresponding

instances (if solving dual) or the corresponding

features (if solving primal). In practical applica-

tions, instance-wise data storage is more common

than feature-wise storage. Therefore, a dual-based

algorithm can directly work on the input data
without any transformation.

Unfortunately, the dual form may not be always

easier to solve. For example, the dual form of L1-

regularized problems involves general linear con-

straints rather than bound constraints in (16), so

solving primal may be easier.

• Using low-order or high-order information. Low-

order methods, such as gradient or subgradient

methods, have been widely considered in large-
scale training. They characterize low-cost update,

low-memory requirement, and slow convergence.

In classification tasks, slow convergence may not be

a serious concern because a loose solution of (7)

may already give similar testing performances to

that by an accurate solution.

High-order methods such as Newton methods

often require the smoothness of the optimization
problems. Further, the cost per step is more

expensive; sometimes a linear system must be

solved. However, their convergence rate is superi-

or. These high-order methods are useful for

applications needing an accurate solution of problem

(7). Some (e.g., [20]) have tried a hybrid setting by

using low-order methods in the beginning and

switching to higher order methods in the end.
• Cost of different types of operations. In a real-world

computer, not all types of operations cost equally.

For example, exponential and logarithmic opera-

tions are much more expensive than multiplication

and division. For training large-scale LR, because

exp = log operations are required, the cost of this

type of operations may accumulate faster than that

of other types. An optimization method which can
avoid intensive exp = log evaluations is potentially

efficient; see more discussion in, for example, [12],

[21], and [22].

• Parallelization. Most existing training algorithms

are inherently sequential, but a parallel algorithm

can make good use of the computational power in a

multicore machine or a distributed system. How-

ever, the communication cost between different
cores or nodes may become a new bottleneck. See

more discussion in Section VII.

Earlier developments of optimization methods for lin-

ear classification tend to focus on data with few features.

By taking this property, they are able to easily train mil-

lions of instances [23]. However, these algorithms may not

be suitable for sparse data with both large numbers of

instances and features, for which we show in Section II
that linear classifiers often give competitive accuracy with

nonlinear classifiers. Many recent studies have proposed

algorithms for such data. We list some of them (and their

software name if any) according to regularization and loss

functions used.

• L2-regularized L1-loss SVM: Available approaches

include, for example, cutting plane methods for

the primal form (SVMperf [4], OCAS [24], and
BMRM [25]), a stochastic (sub)gradient descent

method for the primal form (Pegasos [5], and

SGD [26]), and a coordinate descent method for

the dual form (LIBLINEAR [6]).

• L2-regularized L2-loss SVM: Existing methods for

the primal form include a coordinate descent

method [21], a Newton method [27], and a trust

3Because the bias term b is not considered, therefore, different from
the dual problem considered in SVM literature, an inequality constraintP

yi�i ¼ 0 is absent from (16).
4However, we do not necessarily need the dual problem to get (2).

For example, the reduced SVM [19] directly assumes that w is the linear
combination of a subset of data.

Yuan et al. : Recent Advances of Large-Scale Linear Classification

2588 Proceedings of the IEEE | Vol. 100, No. 9, September 2012

region Newton method (LIBLINEAR [28]). For
the dual problem, a coordinate descent method is

in the software LIBLINEAR [6].

• L2-regularized LR: Most unconstrained optimiza-

tion methods can be applied to solve the primal

problem. An early comparison on small-scale data

is [29]. Existing studies for large sparse data in-

clude iterative scaling methods [12], [30], [31], a

truncated Newton method [32], and a trust region
Newton method (LIBLINEAR [28]). Few works

solve the dual problem. One example is a coordi-

nate descent method (LIBLINEAR [33]).

• L1-regularized L1-loss SVM: It seems no studies

have applied L1-regularized L1-loss SVM on large

sparse data although some early works for data

with either few features or few instances are

available [34]–[36].
• L1-regularized L2-loss SVM: Some proposed

methods include a coordinate descent method

(LIBLINEAR [13]) and a Newton-type method [22].

• L1-regularized LR: Most methods solve the primal

form, for example, an interior-point method

(l1 logreg [37]), (block) coordinate descent meth-

ods (BBR [38] and CGD [39]), a quasi-Newton

method (OWL-QN [40]), Newton-type methods
(GLMNET [41] and LIBLINEAR [22]), and a

Nesterov’s method (SLEP [42]). Recently, an aug-

mented Lagrangian method (DAL [43]) was

proposed for solving the dual problem. Compar-

isons of methods for L1-regularized LR include [13]

and [44].

In the rest of this section, we show details of some

optimization algorithms. We select them not only because
they are popular but also because many design issues

discussed earlier can be covered.

B. Example: A Subgradient Method (Pegasos With
Deterministic Settings)

Shalev-Shwartz et al. [5] proposed a method Pegasos
for solving the primal form of L2-regularized L1-loss SVM.

It can be used for batch and online learning. Here we
discuss only the deterministic setting and leave the sto-

chastic setting in Section VII-A.

Given a training subset B, at each iteration, Pegasos
approximately solves the following problem:

min
w

fðw; BÞ � 1

2
kwk2

2 þ C
X
i2B

maxð0; 1� yiw
TxÞ:

Here, for the deterministic setting, B is the whole training

set. Because L1 loss is not differentiable, Pegasos takes

the following subgradient direction of fðw; BÞ:

rSfðw; BÞ � w� C
X
i2Bþ

yixi (17)

where Bþ � fiji 2 B; 1� yiwTxi > 0g, and updates w by

w w� �rSfðw; BÞ (18)

where � ¼ ðClÞ=k is the learning rate and k is the iteration

index. Different from earlier subgradient descent methods,

after the update by (18), Pegasos further projects w onto

the ball set fwjkwk2 �
ffiffiffiffi
Cl
p
g.5 That is

w min 1;

ffiffiffiffi
Cl
p

kwk2

� �
w: (19)

We show the overall procedure of Pegasos in

Algorithm 1.

Algorithm 1: Pegasos for L2-regularized L1-loss SVM

(deterministic setting for batch learning) [5]

1) Given w such that kwk2 �
ffiffiffiffi
Cl
p

.

2) For k ¼ 1; 2; 3; . . .
a) Let B ¼ fðyi; xiÞgli¼1.

b) Compute the learning rate � ¼ ðClÞ=k.

c) Compute rSfðw; BÞ by (17).

d) w w� �rSfðw; BÞ.
e) Project w by (19) to ensure kwk2 �

ffiffiffiffi
Cl
p

.

For convergence, it is proved that in Oð1=�Þ itera-

tions, Pegasos achieves an average �-accurate solution.
That is

f
XT
k¼1

wk

 !
T

, !
� fðw�Þ � �

where wk is the kth iterate and w� is the optimal solution.

Pegasos has been applied in many studies. One

implementation issue is that information obtained in the

algorithm cannot be directly used for designing a suitable
stopping condition.

C. Example: Trust Region Newton Method ðTRONÞ
Trust region Newton method ðTRONÞ is an effective

approach for unconstrained and bound-constrained opti-

mization. In [28], it applies the setting in [45] to solve (7)

with L2 regularization and differentiable losses.

5The optimal solution of fðwÞ is proven to be in the ball set
fwjkwk2 �

ffiffiffiffi
Cl
p
g; see [5, Th. 1].

Yuan et al. : Recent Advances of Large-Scale Linear Classification

Vol. 100, No. 9, September 2012 | Proceedings of the IEEE 2589

At each iteration, given an iterate w, a trust region
interval �, and a quadratic model

qðdÞ � rfðwÞTd þ 1

2
dTr2fðwÞd (20)

as an approximation of fðwþ dÞ � fðwÞ, TRON finds a

truncated Newton step confined in the trust region by

approximately solving the following subproblem:

min
d

qðdÞ subject to kdk2 � �: (21)

Then, by checking the ratio

� � fðwþ dÞ � fðwÞ
qðdÞ (22)

of actual function reduction to estimated function re-

duction, TRON decides if w should be updated and then
adjusts �. A large enough � indicates that the quadratic

model qðdÞ is close to fðwþ dÞ � fðwÞ, so TRON updates

w to be wþ d and slightly enlarges the trust region in-

terval � for the next iteration. Otherwise, the current

iterate w is unchanged and the trust region interval �
shrinks by multiplying a factor less than one. The overall

procedure of TRON is presented in Algorithm 2.

Algorithm 2: TRON for L2-regularized LR and L2-loss

SVM [28]

1) Given w, �, and �0.

2) For k ¼ 1; 2; 3; . . .
a) Find an approximate solution d of (21) by the

conjugate gradient method.

b) Check the ratio � in (22).

c) If � > �0

w wþ d:

d) Adjust � according to �.

If the loss function is not twice differentiable (e.g., L2

loss), we can use generalized Hessian [14] as r2fðwÞ
in (20).

Some difficulties of applying Newton methods to linear

classification include that r2fðwÞ may be a huge n by n
matrix and solving (21) is expensive. Fortunately, r2fðwÞ

of linear classification problems takes the following special
form:

r2fðwÞ ¼ I þ CXTDwX

where I is an identity matrix, X � ½x1; . . . ; xl�T , and Dw is

a diagonal matrix. In [28], a conjugate gradient method is
applied to solve (21), where the main operation is the

product between r2fðwÞ and a vector v. By

r2fðwÞv ¼ vþ C XT DwðXvÞð Þ
� �

(23)

the Hessian matrix r2fðwÞ need not be stored.

Because of using high-order information (Newton

directions), TRON gives fast quadratic local convergence.

It has been extended to solve L1-regularized LR and L2-loss

SVM in [13] by reformulating (7) to a bound-constrained

optimization problem in (15).

D. Example: Solving Dual SVM by Coordinate
Descent Methods ðDual-CDÞ

Hsieh et al. [6] proposed a coordinate descent method

for the dual L2-regularized linear SVM in (16). We call this

algorithm Dual-CD. Here, we focus on L1-loss SVM,
although the same method has been applied to L2-loss

SVM in [6].

A coordinate descent method sequentially selects one

variable for update and fixes others. To update the ith
variable, the following one-variable problem is solved:

min
d

fDðAþ deiÞ � f DðAÞ

subject to 0 � �i þ d � C

where fðAÞ is defined in (16), ei ¼ ½0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
i�1

; 1; 0; . . . ; 0�T ,

and

f DðAþ deiÞ � f DðAÞ ¼ 1

2
Qiid

2 þrif
DðAÞd:

This simple quadratic function can be easily minimized.
After considering the constraint, a simple update rule for

�i is

�i min max �i �
rif

DðAÞ
Qii

; 0

� �
; C

� �
: (24)

From (24), Qii and rif
DðAÞ are our needs. The

diagonal entries of Q, Qii; 8i, are computed only once

Yuan et al. : Recent Advances of Large-Scale Linear Classification

2590 Proceedings of the IEEE | Vol. 100, No. 9, September 2012

initially, but

rif
DðAÞ ¼ ðQAÞi � 1 ¼

Xl

t¼1

yiytx
T
i xt

� �
�t � 1 (25)

requires OðnlÞ cost for l inner products xTi xt; 8t ¼ 1; . . . ; l.
To make coordinate descent methods viable for large linear

classification, a crucial step is to maintain

u �
Xl

t¼1

yt�txt (26)

so that (25) becomes

rif
DðAÞ ¼ ðQAÞi � 1 ¼ yiu

Txi � 1: (27)

If u is available through the training process, then the cost

OðnlÞ in (25) is significantly reduced to OðnÞ. The re-

maining task is to maintain u. Following (26), if ��i and �i

are values before and after the update (24), respectively,

then we can easily maintain u by the following OðnÞ
operation:

u uþ yið�i � ��iÞxi: (28)

Therefore, the total cost for updating an �i is OðnÞ. The

overall procedure of the coordinate descent method is in
Algorithm 3.

Algorithm 3: A coordinate descent method for L2-

regularized L1-loss SVM [6]

1) Given A and the corresponding u ¼
Pl

i¼1 yi�ixi.
2) Compute Qii; 8i ¼ 1; . . . ; l.
3) For k ¼ 1; 2; 3; . . .

• For i ¼ 1; . . . ; l
a) Compute G ¼ yiuTxi � 1 in (27).

b) ��i �i.

c) �i minðmaxð�i � G=Qii; 0Þ; CÞ.
d) u uþ yið�i � ��iÞxi.

The vector u defined in (26) is in the same form as w
in (2). In fact, as A approaches a dual optimal solution,

u will converge to the primal optimal w following the

primal–dual relationship.

The linear convergence of Algorithm 3 is established in
[6] using techniques in [46]. The authors propose two

implementation tricks to speed up the convergence. First,

instead of a sequential update, they repeatedly permute

f1; . . . ; lg to decide the order. Second, similar to the

shrinking technique used in training nonlinear SVM [47],

they identify some bounded variables which may already

be optimal and remove them during the optimization

procedure. Experiments in [6] show that for large sparse
data, Algorithm 3 is much faster than TRON in the early

stage. However, it is less competitive if the parameter C is

large.

Algorithm 3 is very related to popular decomposition

methods used in training nonlinear SVM (e.g., [8] and

[47]). These decomposition methods also update very few

variables at each step, but use more sophisticated schemes

for selecting variables. The main difference is that for
linear SVM, we can define u in (26) because xi; 8i are

available. For nonlinear SVM,rif
DðwÞ in (25) needs OðnlÞ

cost for calculating l kernel elements. This difference

between OðnÞ and OðnlÞ is similar to that in the testing

phase discussed in Section II.

E. Example: Solving L1-Regularized Problems by
Combining Newton and Coordinate Descent
Methods ðnewGLMNETÞ

GLMNET proposed by Friedman et al. [41] is a

Newton method for L1-regularized minimization. An im-

proved version newGLMNET [22] is proposed for large-

scale training.

Because the 1-norm term is not differentiable, we

represents fðwÞ as the sum of two terms kwk1 þ LðwÞ,
where

LðwÞ � C
Xl

i¼1

�ðw; xi; yiÞ:

At each iteration, newGLMNET considers the second-

order approximation of LðwÞ and solves the following

problem:

min
d

qðdÞ � kwþ dk1 � kwk1 þrLðwÞ
Td þ 1

2
dTHd

(29)

where H � r2LðwÞ þ �I and � is a small number to

ensure H to be positive definite.

Although (29) is similar to (21), its optimization is

more difficult because of the 1-norm term. Thus,

newGLMNET further breaks (29) to subproblems by a

coordinate descent procedure. In a setting similar to the

Yuan et al. : Recent Advances of Large-Scale Linear Classification

Vol. 100, No. 9, September 2012 | Proceedings of the IEEE 2591

method in Section IV-D, each time a one-variable function

is minimized

qðd þ zejÞ � qðdÞ¼jwjþ djþ zj � jwj þ djj þ Gjzþ
1

2
Hjjz

2

(30)

where G � rLðwÞ þ Hd. This one-variable function (30)

has a simple closed-form minimizer (see [48], [49], and

[13, App. B])

z ¼
� Gjþ1

Hjj
; if Gj þ 1 � Hjjðwj þ djÞ

� Gj�1

Hjj
; if Gj � 1 � Hjjðwj þ djÞ

�ðwj þ djÞ; otherwise:

8><
>:

At each iteration of newGLMNET, the coordinate descent

method does not solve problem (29) exactly. Instead,

newGLMNET designs an adaptive stopping condition so

that initially problem (29) is solved loosely and in the final
iterations, (29) is more accurately solved.

After an approximate solution d of (29) is obtained, we

need a line search procedure to ensure the sufficient

function decrease. It finds � 2 ð0; 1� such that

fðwþ �dÞ � fðwÞ � �� kwþ dk1 � kwk1 þrLðwÞ
Td

� �
(31)

where � 2 ð0; 1Þ. The overall procedure of newGLMNET
is in Algorithm 4.

Algorithm 4: newGLMNET for L1-regularized minimiza-

tion [22]

1) Given w. Given 0 G 	; � G 1.

2) For k ¼ 1; 2; 3; . . .
a) Find an approximate solution d of (29) by a

coordinate descent method.

b) Find � ¼ maxf1; 	; 	2; . . .g such that (31) holds.

c) w wþ �d.

Due to the adaptive setting, in the beginning

newGLMNET behaves like a coordinate descent method,

which is able to quickly obtain an approximate w; however,

in the final stage, the iterate w converges quickly because a

Newton step is taken. Recall in Section IV-A, we men-

tioned that exp = log operations are more expensive than

basic operations such as multiplication/division. Because

(30) does not involve any exp = log operation, we suc-
cessfully achieve that time spent on exp = log operations is

only a small portion of the whole procedure. In addition,

newGLMNET is an example of accessing data feature

wisely; see details in [22] about how Gj in (30) is updated.

F. A Comparison of the Four Examples
The four methods discussed in Sections IV-B–E differ in

various aspects. By considering design issues mentioned in

Section IV-A, we compare these methods in Table 2. We

point out that three methods are primal based, but one is

dual based. Next, both Pegasos and Dual-CD use only

low-order information (subgradient and gradient), but

TRON and newGLMNET employ high-order information

by Newton directions. Also, we check how data instances

are accessed. Clearly, Pegasos and Dual-CD instance
wisely access data, but we have mentioned in Section IV-E

that newGLMNET must employ a feature wisely setting.

Interestingly, TRON can use both because in (23), matrix–

vector products can be conducted by accessing data in-

stance wisely or feature wisely.

We analyze the complexity of the four methods by

showing the cost at the kth iteration:

• Pegasos: OðjBþjnÞ;
• TRON: #CG iter� OðlnÞ;
• Dual-CD: OðlnÞ;
• newGLMNET: #CD iter� OðlnÞ.

The cost of Pegasos and TRON easily follows from (17)

and (23), respectively. For Dual-CD, both (27) and (28)

cost OðnÞ, so one iteration of going through all variables is

OðnlÞ. For newGLMNET, see details in [22]. We can

clearly see that each iteration of Pegasos and Dual-CD is
cheaper because of using low-order information. However,

they need more iterations than high-order methods in

order to accurately solve the optimization problem.

V. MULTICLASS LINEAR
CLASSIFICATION

Most classification methods are originally proposed to

solve a two-class problem; however, extensions of these

methods to multiclass classification have been studied. For

nonlinear SVM, some works (e.g., [50] and [51]) have

Table 2 A Comparison of the Four Methods in Section IV-B–E

Yuan et al. : Recent Advances of Large-Scale Linear Classification

2592 Proceedings of the IEEE | Vol. 100, No. 9, September 2012

comprehensively compared different multiclass solutions.
In contrast, few studies have focused on multiclass linear

classification. This section introduces and compares some

commonly used methods.

A. Solving Several Binary Problems
Multiclass classification can be decomposed to several

binary classification problems. One-against-rest and one-

against-one methods are two of the most common de-

composition approaches. Studies that broadly discussed

various approaches of decomposition include, for example,

[52] and [53].

• One-against-rest method. If there are k classes in the

training data, the one-against-rest method [54]
constructs k binary classification models. To obtain

the mth model, instances from the mth class of the

training set are treated as positive, and all other

instances are negative. Then, the weight vector wm

for the mth model can be generated by any linear

classifier.

After obtaining all k models, we say an instance

x is in the mth class if the decision value (1) of the
mth model is the largest, i.e.,

class of x � arg max
m¼1;...;k

wT
mx: (32)

The cost for testing an instance is OðnkÞ.
• One-against-one method. One-against-one method

[55] solves kðk� 1Þ=2 binary problems. Each bi-

nary classifier constructs a model with data from
one class as positive and another class as negative.

Since there is kðk� 1Þ=2 combination of two

classes, kðk� 1Þ=2 weight vectors are constructed:

w1;2;w1;3; . . . ;w1;k;w2;3; . . . ;wðk�1Þ;k.

There are different methods for testing. One

approach is by voting [56]. For a testing instance

x, if model ði; jÞ predicts x as in the ith class, then a

counter for the ith class is added by one;
otherwise, the counter for the jth class is added.

Then, we say x is in the ith class if the ith counter

has the largest value. Other prediction methods

are similar though they differ in how to use the

kðk� 1Þ=2 decision values; see some examples in

[52] and [53].

For linear classifiers, one-against-one method is

shown to give better testing accuracy than one-
against-rest method [57]. However, it requires

Oðk2nÞ spaces for storing models and Oðk2nÞ cost

for testing an instance; both are more expensive

than the one-against-rest method. Interestingly,

for nonlinear classifiers via kernels, one-against-

one method does not have such disadvantages [50].

DAGSVM [58] is the same as one-against-one

method but it attempts to reduce the testing cost.
Starting with a candidate set of all classes, this

method sequentially selects a pair of classes for

prediction and removes one of the two. That is, if a

binary classifier of class i and j predicts i, then j is

removed from the candidate set. Alternatively, a

prediction of class j will cause i to be removed.

Finally, the only remained class is the predicted

result. For any pair ði; jÞ considered, the true class
may be neither i nor j. However, it does not matter

which one is removed because all we need is that if

the true class is involved in a binary prediction, it is

the winner. Because classes are sequentially

removed, only k� 1 models are used. The testing

time complexity of DAGSVM is thus OðnkÞ.

B. Considering All Data at Once
In contrast to using many binary models, some have

proposed solving a single optimization problem for multi-

class classification [59]–[61]. Here we discuss details of
Crammer and Singer’s approach [60]. Assume class labels

are 1; . . . ; k. They consider the following optimization

problem:

min
w1;...;wk

1

2

Xk
m¼1

kwmk2
2 þ C

Xl

i¼1

�CS fwmgkm¼1; xi; yi
� �

(33)

where

�CS fwmgkm¼1; x; y
� �

� max
m 6¼y

max 0; 1� ðwy � wmÞTx
� �

:

(34)

The setting is like combining all binary models of the one-

against-rest method. There are k weight vectors w1; . . . ;wk

for k classes. In the loss function (34), for each m,
maxð0; 1� ðwyi � wmÞTxiÞ is similar to the L1 loss in (8)

for binary classification. Overall, we hope that the decision

value of xi by the model wyi is at least one larger than the

values by other models. For testing, the decision function

is also (32).

Early works of this method focus on the nonlinear (i.e.,

kernel) case [50], [60], [62]. A study for linear classifica-

tion is in [63], which applies a coordinate descent method
to solve the dual problem of (33). The idea is similar to the

method in Section IV-D; however, at each step, a larger

subproblem of k variables is solved. A nice property of this

k-variable subproblem is that it has a closed-form solution.

Experiments in [63] show that solving (33) gives slightly

better accuracy than one-against-rest method, but the

training time is competitive. This result is different from

Yuan et al. : Recent Advances of Large-Scale Linear Classification

Vol. 100, No. 9, September 2012 | Proceedings of the IEEE 2593

the nonlinear case, where the longer training time than
one-against-rest and one-against-one methods has made

the approach of solving one single optimization problem

less practical [50]. A careful implementation of the ap-

proach in [63] is given in [7, App. E].

C. Maximum Entropy
Maximum entropy (ME) [64] is a generalization of

logistic regression for multiclass problems6 and a special

case of conditional random fields [65] (see Section VIII-A).

It is widely applied by NLP applications. We still assume

class labels 1; . . . ; k for an easy comparison to (33) in our
subsequent discussion. ME models the following condi-

tional probability function of label y given data x:

PðyjxÞ �
exp wT

y x
� �

Pk
m¼1 exp wT

mx
� � (35)

where wm; 8m are weight vectors like those in (32) and

(33). This model is also called multinomial logistic

regression.

ME minimizes the following regularized negative log-

likelihood:

min
w1;...;wm

1

2

Xk
m¼1

kwkk2 þ C
Xl

i¼1

�ME fwmgkm¼1; xi; yi
� �

(36)

where

�ME fwmgkm¼1; x; y
� �

� � log PðyjxÞ:

Clearly, (36) is similar to (33) and �MEð	Þ can be consid-

ered as a loss function. If wT
yi
xi
 wT

mxi; 8m 6¼ yi, then

�MEðfwmgkm¼1; xi; yiÞ is close to zero (i.e., no loss). On the

other hand, if wT
yi
xi is smaller than other wT

mxi, m 6¼ yi,
then PðyijxiÞ � 1 and the loss is large. For prediction, the
decision function is also (32).

NLP applications often consider a more general ME

model by using a function f ðx; yÞ to generate the feature

vector

PðyjxÞ � exp wTf ðx; yÞð ÞP
y0 exp wTf ðx; y0Þð Þ : (37)

Equation (35) is a special case of (37) by

f ðxi; yÞ ¼

0
..
.

0
xi
0
..
.

0

2
6666666664

3
7777777775

)
y�1

2 Rnk and w ¼
w1

..

.

wk

2
64

3
75: (38)

Many studies have investigated optimization methods

for L2-regularized ME. For example, Malouf [66] com-

pares iterative scaling methods [67], gradient descent,

nonlinear conjugate gradient, and L-BFGS (quasi-Newton)
method [68] to solve (36). Experiments show that quasi-

Newton performs better. In [12], a framework is proposed

to explain variants of iterative scaling methods [30], [67],

[69] and make a connection to coordinate descent meth-

ods. For L1-regularized ME, Andrew and Gao [40] propose

an extension of L-BFGS.

Recently, instead of solving the primal problem (36),

some works solve the dual problem. A detailed derivation
of the dual ME is in [33, App. A.7]. Memisevic [70] pro-

posed a two-level decomposition method. Similar to the

coordinate descent method [63] for (33) in Section V-B, in

[70], a subproblem of k variables is considered at a time.

However, the subproblem does not have a closed-form

solution, so a second-level coordinate descent method is

applied. Collin et al. [71] proposed an exponential gradient

method to solve ME dual. They also decompose the prob-
lem into k-variable subproblems, but only approximately

solve each subproblem. The work in [33] follows [70] to

apply a two-level coordinate descent method, but uses a

different method in the second level to decide variables for

update.

D. Comparison
We summarize storage (model size) and testing time of

each method in Table 3. Clearly, one-against-one and

DAGSVM methods are less practical because of the much

higher storage, although the comparison in [57] indicates

that one-against-one method gives slightly better testing

accuracy. Note that the situation is very different for the

6Details of the connection between logistic regression and maximum
entropy can be found in, for example, [12, Sec. 5.2].

Table 3 Comparison of Methods for Multiclass Linear Classification in

Storage (Model Size) and Testing Time. n Is the Number of Features and

k Is the Number of Classes

Yuan et al. : Recent Advances of Large-Scale Linear Classification

2594 Proceedings of the IEEE | Vol. 100, No. 9, September 2012

kernel case [50], where one-against-one and DAGSVM are
very useful methods.

VI. LINEAR-CLASSIFICATION
TECHNIQUES FOR NONLINEAR
CLASSIFICATION

Many recent developments of linear classification can be

extended to handle nonstandard scenarios. Interestingly,
most of them are related to training nonlinear classifiers.

A. Training and Testing Explicit Data Mappings via
Linear Classifiers

In some problems, training a linear classifier in the

original feature space may not lead to competitive perfor-

mances. For example, on ijcnn1 in Table 1, the testing

accuracy (92.21%) of a linear classifier is inferior to 98.
69% of a nonlinear one with the RBF kernel. However, the

higher accuracy comes with longer training and testing

time. Taking the advantage of linear classifiers’ fast train-

ing, some studies have proposed using the explicit nonlin-

ear data mappings. That is, we consider �ðxiÞ, i ¼ 1; . . . ; l,
as the new training set and employ a linear classifier. In

some problems, this type of approaches may still enjoy fast

training/testing, but achieve accuracy close to that of using
highly nonlinear kernels.

Some early works, e.g., [72]–[74], have directly trained

nonlinearly mapped data in their experiments. Chang et al.
[9] analyze when this approach leads to faster training and

testing. Assume that the coordinate descent method in

Section IV-D is used for training linear/kernelized classi-

fiers7 and �ðxÞ 2 Rd. From Section IV-D, each coordinate

descent step takes OðdÞ and OðnlÞ operations for linear and
kernelized settings, respectively. Thus, if d� nl, the ap-

proach of training explicit mappings may be faster than

using kernels. In [9], the authors particularly study

degree-2 polynomial mappings such as (5). The dimen-

sionality is d ¼ Oðn2Þ, but for sparse data, the Oðn2Þ versus

OðnlÞ comparison is changed to Oð�n2Þ versus Oð�nlÞ, where

�n is the average number of nonzero values per instance.

For large sparse data sets, �n� l, so their approach can be
very efficient. Table 4 shows results of training/testing

degree-2 polynomial mappings using three data sets in

Table 1 with significant lower linear-SVM accuracy than

RBF. We apply the same setting as [9, Sec. 4]. From

Tables 1 and 4, we observed that training �ðxiÞ; 8i by a

linear classifier may give accuracy close to RBF kernel, but

is faster in training/testing.

A general framework was proposed in [75] for various
nonlinear mappings of data. They noticed that to perform

the coordinate descent method in Section IV-D, one only

needs that uT�ðxÞ in (27) and u uþ yð�i � ��iÞ�ðxÞ in

(28) can be performed. Thus, even if �ðxÞ cannot be

explicitly represented, as long as these two operations can

be performed, Algorithm 3 is applicable.

Studies in [76] and [77] designed linear classifiers to

train explicit mappings of sequence data, where features

correspond to subsequences. Using the relation between
subsequences, they are able to design efficient training

methods for very high-dimensional mappings.

B. Approximation of Kernel Methods via
Linear Classification

Methods in Section VI-A train �ðxiÞ; 8i explicitly, so

they obtain the same model as a kernel method using

Kðxi; xjÞ ¼ �ðxiÞT�ðxjÞ. However, they have limitations

when the dimensionality of �ðxÞ is very high. To resolve

the slow training/testing of kernel methods, approxima-

tion is sometimes unavoidable. Among the many available
methods to approximate the kernel, some of them lead to

training a linear classifier. Following [78], we categorize

these methods to the following two types.

• Kernel matrix approximation. This type of ap-

proaches finds a low-rank matrix �� 2 Rd�l with

d� l such that ��T �� can approximate the kernel

matrix Q

�Q ¼ ��T �� � Q: (39)

Assume �� � ½�x1; . . . ; �xl�. If we replace Q in (16)
with �Q, then (16) becomes the dual problem of

training a linear SVM on the new set ðyi; �xiÞ,
i ¼ 1; . . . ; l. Thus, optimization methods discussed

in Section IV can be directly applied. An advantage

of this approach is that we do not need to know an

explicit mapping function corresponding to a

kernel of our interest (see the other type of ap-

proaches discussed below). However, this property
causes a complicated testing procedure. That is,

the approximation in (39) does not directly reveal

how to adjust the decision function (3).

Early developments focused on finding a good

approximation matrix ��. Some examples include

Nyström method [79], [80] and incomplete

Cholesky factorization [81], [82]. Some works

7See the discussion in the end of Section IV-D about the connection
between Algorithm 3 and the popular decomposition methods for nonlinear
SVMs.

Table 4 Results of Training/Testing Degree-2 Polynomial Mappings by

the Coordinate Descent Method in Section IV-D. The Degree-2 Polynomial

Mapping Is Dynamically Computed During Training, Instead of Expanded

Beforehand. The Last Column Shows the Accuracy Difference Between

Degree-2 Polynomial Mappings and RBF SVM

Yuan et al. : Recent Advances of Large-Scale Linear Classification

Vol. 100, No. 9, September 2012 | Proceedings of the IEEE 2595

(e.g., [19]) consider approximations other than
(39), but also lead to linear classification problems.

A recent study [78] addresses more on training

and testing linear SVM after obtaining the low-

rank approximation. In particular, details of the

testing procedures can be found in [78, Sec. 2.4].

Note that linear SVM problems obtained after

kernel approximations are often dense and have

more instances than features. Thus, training
algorithms suitable for such problems may be

different from those for sparse document data.

• Feature mapping approximation. This type of ap-

proaches finds a mapping function �� : Rn ! Rd

such that

��ðxÞT ��ðtÞ � Kðx; tÞ:

Then, linear classifiers can be applied to new data
��ðx1Þ; . . . ; ��ðxlÞ. The testing phase is straightfor-
ward because the mapping ��ð	Þ is available.

Many mappings have been proposed. Examples

include random Fourier projection [83], random

projections [84], [85], polynomial approximation

[86], and hashing [87]–[90]. They differ in various

aspects, which are beyond the scope of this paper.

An issue related to the subsequent linear classifi-

cation is that some methods (e.g., [83]) generate
dense ��ðxÞ vectors, while others give sparse

vectors (e.g., [85]). A recent study focusing on

the linear classification after obtaining ��ðxiÞ; 8i is

in [91].

VII. TRAINING LARGE DATA BEYOND
THE MEMORY OR THE DISK CAPACITY

Recall that we described some binary linear classification

algorithms in Section IV. Those algorithms can work well

under the assumption that the training set is stored in the

computer memory. However, as the training size goes
beyond the memory capacity, traditional algorithms may

become very slow because of frequent disk access. Indeed,

even if the memory is enough, loading data to memory may

take more time than subsequent computation [92]. There-

fore, the design of algorithms for data larger than memory

is very different from that of traditional algorithms.

If the data set is beyond the disk capacity of a single

computer, then it must be stored distributively. Internet
companies now routinely handle such large data sets in

data centers. In such a situation, linear classification faces

even more challenges because of expensive communica-

tion cost between different computing nodes. In some

recent works [93], [94], parallel SVM on distributed envi-

ronments has been studied but they investigated only

kernel SVM. The communication overhead is less serious

because of expensive kernel computation. For distributed
linear classification, the research is still in its infancy. The

current trend is to design algorithms so that computing

nodes access data locally and the communication between

nodes is minimized. The implementation is often con-

ducted using distributed computing environments such as

Hadoop [95]. In this section, we will discuss some ongoing

research results.

Among the existing developments, some can be easily
categorized as online methods. We describe them in Sec-

tion VII-A. Batch methods are discussed in Section VII-B,

while other approaches are in Section VII-C.

A. Online Methods
An online method updates the model w via using some

instances at a time rather than considering the whole

training data. Therefore, not only can online methods

handle data larger than memory, but also they are suitable

for streaming data where each training instance is used

only once. One popular online algorithm is the stochastic
gradient descent (SGD) method, which can be traced back

to stochastic approximation method [96], [97]. Take the

primal L2-regularized L1-loss SVM in (7) as an example.

At each step, a training instance xi is chosen and w is

updated by

w w� �rS 1

2
kwk2

2 þ Cmaxð0; 1� yiw
TxiÞ

� �
(40)

where rS is a subgradient operator and � is the learning

rate. Specifically, (40) becomes the following update rule:

If 1� yiw
Txi > 0;

then w ð1� �Þwþ �Cyixi:
(41)

The learning rate � is gradually reduced along iterations.

It is well known that SGD methods have slow con-
vergence. However, they are suitable for large data because

of accessing only one instance at a time. Early studies

which have applied SGD to linear classification include,

for example, [98] and [99]. For data with many features,

recent studies [5], [26] show that SGD is effective. They

allow more flexible settings such as using more than one

training instance at a time. We briefly discuss the online

setting of Pegasos [5]. In Algorithm 1, at each step a), a
small random subset B is used instead of the full set.

Similar convergence properties to that described in

Section IV-B still hold but in expectation (see [5, Th. 2]).

Instead of solving the primal problem, we can design an

online algorithm to solve the dual problem [6], [100]. For

example, the coordinate descent method in Algorithm 3

can be easily extended to an online setting by replacing the

Yuan et al. : Recent Advances of Large-Scale Linear Classification

2596 Proceedings of the IEEE | Vol. 100, No. 9, September 2012

sequential selection of variables with a random selection.
Notice that the update rule (28) is similar to (41), but has

the advantage of not needing to decide the learning rate �.

This online setting falls into the general framework of

randomized coordinate descent methods in [101] and

[102]. Using the proof in [101], the linear convergence in

expectation is obtained in [6, App. 7.5].

To improve the convergence of SGD, some [103], [104]

have proposed using higher order information. The rule in
(40) is replaced by

w w� �HrSð	Þ (42)

where H is an approximation of the inverse Hessian

r2fðwÞ�1. To save the cost at each update, practically H is

a diagonal scaling matrix. Experiments [103] and [104]

show that using (42) is faster than (40).

The update rule in (40) assumes L2 regularization.
While SGD is applicable for other regularization, it may

not perform as well because of not taking special pro-

perties of the regularization term into consideration. For

example, if L1 regularization is used, a standard SGD may

face difficulties to generate a sparse w. To address this

problem, recently several approaches have been proposed

[105]–[110]. The stochastic coordinate descent method in

[106] has been extended to a parallel version [111].
Unfortunately, most existing studies of online algo-

rithms conduct experiments by assuming enough memory

and reporting the number of times to access data. To apply

them in a real scenario without sufficient memory, many

practical issues must be checked. Vowpal-Wabbit [112] is

one of the very few implementations which can handle

data larger than memory. Because the same data may be

accessed several times and the disk reading time is expen-
sive, at the first pass, Vowpal-Wabbit stores data to a

compressed cache file. This is similar to the compression

strategy in [92], which will be discussed in Section VII-B.

Currently, Vowpal-Wabbit supports unregularized linear

classification and regression. It is extended to solve L1-

regularized problems in [105].

Recently, Vowpal-Wabbit (after version 6.0) has sup-

ported distributed online learning using the Hadoop [95]
framework. We are aware that other Internet companies

have constructed online linear classifiers on distributed

environments, although details have not been fully avail-

able. One example is the system SETI at Google [113].

B. Batch Methods
In some situations, we still would like to consider the

whole training set and solve a corresponding optimization

problem. While this task is very challenging, some (e.g.,

[92] and [114]) have checked the situation that data are

larger than memory but smaller than disk. Because of ex-

pensive disk input/output (I/O), they design algorithms by
reading a continuous chunk of data at a time and mini-

mizing the number of disk accesses. The method in [92]

extends the coordinate descent method in Section IV-D for

linear SVM. The major change is to update more variables

at a time so that a block of data is used together.

Specifically, in the beginning, the training set is randomly

partitioned to m files B1; . . . ; Bm. The available memory

space needs to be able to accommodate one block of data
and the working space of a training algorithm. To solve

(16), sequentially one block of data B is read and the

following function of d is minimized under the condition

0 � �i þ di � C; 8i 2 B and di ¼ 0; 8i 62 B

fDðAþ dÞ � f DðAÞ ¼ 1

2
dTBQBBdB þ dTBðQA� eÞB

¼ 1

2
dTBQBBdB þ

X
i2B

yidiðuTxiÞ � dTBeB

(43)

where QBB is a submatrix of Q and u is defined in (26). By

maintaining u in a way similar to (28), equation (43) in-

volves only data in the block B, which can be stored in

memory. Equation (43) can be minimized by any tradi-

tional algorithm. Experiments in [92] demonstrate that

they can train data 20 times larger than the memory capa-

city. This method is extended in [115] to cache informative
data points in the computer memory. That is, at each

iteration, not only the selected block but also the cached

points are used for updating corresponding variables. Their

way to select informative points is inspired by the shrink-

ing techniques used in training nonlinear SVM [8], [47].

For distributed batch learning, all existing parallel

optimization methods [116] can possibly be applied. How-

ever, we have not seen many practical deployments for
training large-scale data. Recently, Boyd et al. [117] have

considered the alternating direction method of multiplier

(ADMM) [118] for distributed learning. Take SVM as an

example and assume data points are partitioned to m dis-

tributively stored sets B1; . . . ; Bm. This method solves the

following approximation of the original optimization

problem:

min
w1;...;wm;z

1

2
zTzþ C

Xm
j¼1

X
i2Bj

�L1
ðwj; xi; yiÞ

þ

2

Xm
j¼1

kwj � zk2

subject to wj � z ¼ 0; 8j

where
 is a prespecific parameter. It then employs an

optimization method of multipliers by alternatively

minimizing the Lagrangian function over w1; . . . ;wm,

Yuan et al. : Recent Advances of Large-Scale Linear Classification

Vol. 100, No. 9, September 2012 | Proceedings of the IEEE 2597

minimizing the Lagrangian over z, and updating dual mul-
tipliers. The minimization of Lagrangian over w1; . . . ;wm

can be decomposed to m independent problems. Other

steps do not involve data at all. Therefore, data points are

locally accessed and the communication cost is kept

minimum. Examples of using ADMM for distributed

training include [119]. Some known problems of this

approaches are first that the convergence rate is not very

fast, and second that it is unclear how to choose param-
eter
.

Some works solve an optimization problem using

parallel SGD. The data are stored in a distributed system,

and each node only computes the subgradient correspond-

ing to the data instances in the node. In [120], a delayed

SGD is proposed. Instead of computing the subgradient of

the current iterate wk, in delayed SGD, each node com-

putes the subgradient of a previous iterator w�ðkÞ, where
�ðkÞ � k. Delayed SGD is useful to reduce the synchro-

nization delay because of communication overheads or

uneven computational time at various nodes. Recent works

[121], [122] show that delayed SGD is efficient when the

number of nodes is large, and the delay is asymptotically

negligible.

C. Other Approaches
We briefly discuss some other approaches which can-

not be clearly categorized as batch or online methods.

The most straightforward method to handle large data

is probably to randomly select a subset that can fit in

memory. This approach works well if the data quality is

good; however, sometimes using more data gives higher

accuracy. To improve the performance of using only a

subset, some have proposed techniques to include impor-
tant data points into the subset. For example, the approach

in [123] selects a subset by reading data from disk only

once. For data in a distributed environment, subsampling

can be a complicated operation. Moreover, a subset fitting

the memory of one single computer may be too small to

give good accuracy.

Bagging [124] is a popular classification method to split

a learning task to several easier ones. It selects several
random subsets, trains each of them, and ensembles (e.g.,

averaging) the results during testing. This method may be

particularly useful for distributively stored data because we

can directly consider data in each node as a subset. How-

ever, if data quality in each node is not good (e.g., all

instances with the same class label), the model generated

by each node may be poor. Thus, ensuring data quality of

each subset is a concern. Some studies have applied the
bagging approach on a distributed system [125], [126].

For example, in the application of web advertising,

Chakrabarti et al. [125] train a set of individual classifiers

in a distributed way. Then, a final model is obtained by

averaging the separate classifiers. In the linguistic appli-

cations, McDonald et al. [127] extend the simple model

average to the weighted average and achieve better perfor-

mance. An advantage of the bagging-like approach is the
easy implementation using distributed computing techni-

ques such as MapReduce [128].8

VIII . RELATED TOPICS

In this section, we discuss some other linear models. They

are related to linear classification models discussed in

earlier sections.

A. Structured Learning
In the discussion so far, we assumed that the label yi is a

single value. For binary classification, it is þ1 or �1, while

for multiclass classification, it is one of the k class labels.

However, in some applications, the label may be a more

sophisticated object. For example, in part-of-speech (POS)

tagging applications, the training instances are sentences

and the labels are sequences of POS tags of words. If there
are l sentences, we can write the training instances as

ðyi; xiÞ 2 Yni � Xni ; 8i ¼ 1; . . . ; l, where xi is the ith sen-

tence, yi is a sequence of tags, X is a set of unique words in

the context, Y is a set of candidate tags for each word, and

ni is the number of words in the ith sentence. Note that

we may not be able to split the problem to several

independent ones by treating each value yij of yi as the

label, because yij not only depends on the sentence xi but
also other tags ðyi1; . . . ; yiðj�1Þ; yiðjþ1Þ; . . . yiniÞ. To handle

these problems, we could use structured learning models

like conditional random fields [65] and structured SVM

[129], [130].

• Conditional random fields (CRFs). The CRF [65] is a

linear structured model commonly used in NLP.

Using notation mentioned above and a feature

function f ðx; yÞ like ME, CRF solves the following
problem:

min
w

1

2
kwk2

2 þ C
Xl

i¼1

�CRFðw; xi; yiÞ (44)

where

�CRFðw; xi; yiÞ � � log PðyijxiÞ

PðyjxÞ � exp wTf ðx; yÞð ÞP
y0 exp wTf ðx; y0Þð Þ : (45)

If elements in yi are independent of each other,

then CRF reduces to ME.

8We mentioned earlier the Hadoop system, which includes a
MapReduce implementation.

Yuan et al. : Recent Advances of Large-Scale Linear Classification

2598 Proceedings of the IEEE | Vol. 100, No. 9, September 2012

The optimization of (44) is challenging because
in the probability model (45), the number of

possible y’s is exponentially large. An important

property to make CRF practical is that the gradient

of the objective function in (44) can be efficiently

evaluated by dynamic programming [65]. Some

available optimization methods include L-BFGS

(quasi-Newton) and conjugate gradient [131], SGD

[132], stochastic quasi-Newton [103], [133], and
trust region Newton method [134]. It is shown in

[134] that the Hessian-vector product (23) of the

Newton method can also be evaluated by dynamic

programming.

• Structured SVM. Structured SVM solves the follow-

ing optimization problem generalized form multi-

class SVM in [59], [60]:

min
w

1

2
kwk2

2 þ C
Xl

i¼1

�SSðw; xi; yiÞ (46)

where

�SSðw; xi; yiÞ � max
y 6¼yi

�
max

�
0;�ðyi; yÞ

� wT f ðxi; yiÞ � f ðxi; yÞð Þ
��

and �ð	Þ is a distance function with �ðyi; yiÞ ¼ 0

and �ðyi; yjÞ ¼ �ðyj; yiÞ. Similar to the relation

between conditional random fields and maximum

entropy, if

�ðyi; yjÞ ¼
0; if yi ¼ yj

1; otherwise

(

and yi 2 f1; . . . ; kg; 8i, then structured SVM be-

comes Crammer and Singer’s problem in (33) fol-

lowing the definition of f ðx; yÞ and w in (38).

Like CRF, the main difficulty to solve (46) is on

handling an exponential number of y values. Some
works (e.g., [25], [129], and [135]) use a cutting

plane method [136] to solve (46). In [137], a sto-

chastic subgradient descent method is applied for

both online and batch settings.

B. Regression
Given training data fðzi; xiÞgli¼1 � R�Rn, a regres-

sion problem finds a weight vector w such that wTxi �
zi; 8i. Like classification, a regression task solves a risk

minimization problem involving regularization and loss

terms. While L1 and L2 regularization is still used, loss
functions are different, where two popular ones are

�LSðw; x; zÞ �
1

2
ðz� wTxÞ2 (47)

��ðw; x; zÞ � max 0; jz� wTxj � �
� �

: (48)

The least square loss in (47) is widely used in many places,

while the �-insensitive loss in (48) is extended from the L1
loss in (8), where there is a user-specified parameter � as

the error tolerance. Problem (7) with L2 regularization

and �-insensitive loss is called support vector regression

(SVR) [138]. Contrary to the success of linear classifica-

tion, so far not many applications of linear regression on

large sparse data have been reported. We believe that this

topic has not been fully explored yet.

Regarding the minimization of (7), if L2 regulariza-
tion is used, many optimization methods mentioned in

Section IV can be easily modified for linear regression.

We then particularly discuss L1-regularized least

square regression, which has recently drawn much atten-

tion for signal processing and image applications. This

research area is so active that many optimization methods

(e.g., [49] and [139]–[143]) have been proposed. However,

as pointed out in [13], optimization methods most suitable
for signal/image applications via L1-regularized regression

may be very different from those in Section IV for classi-

fying large sparse data. One reason is that data from signal/

image problems tend to be dense. Another is that xi; 8i
may be not directly available in some signal/image prob-

lems. Instead, we can only evaluate the product between

the data matrix and a vector through certain operators.

Thus, optimization methods that can take this property
into their design may be more efficient.

IX. CONCLUSION

In this paper, we have comprehensively reviewed recent

advances of large linear classification. For some applica-

tions, linear classifiers can give comparable accuracy to

nonlinear classifiers, but enjoy much faster training and
testing speed. However, these results do not imply that

nonlinear classifiers should no longer be considered. Both

linear and nonlinear classifiers are useful under different

circumstances.

Without mapping data to another space, for linear

classification we can easily prepare, select, and manipulate

features. We have clearly shown that linear classification is

not limited to standard scenarios like document classifi-
cation. It can be applied in many other places such as

efficiently approximating nonlinear classifiers. We are

confident that future research works will make linear

classification a useful technique for more large-scale

applications. h

Yuan et al. : Recent Advances of Large-Scale Linear Classification

Vol. 100, No. 9, September 2012 | Proceedings of the IEEE 2599

REFERENCES

[1] B. E. Boser, I. Guyon, and V. Vapnik,
BA training algorithm for optimal margin
classifiers,[in Proc. 5th Annu. Workshop
Comput. Learn. Theory, 1992, pp. 144–152.

[2] C. Cortes and V. Vapnik, BSupport-vector
network,[Mach. Learn., vol. 20,
pp. 273–297, 1995.

[3] J. S. Cramer, BThe origins of logistic
regression,[Tinbergen Inst., Amsterdam,
The Netherlands, Tech. Rep. [Online].
Available: http://ideas.repec.org/p/dgr/
uvatin/20020119.html

[4] T. Joachims, BTraining linear SVMs in
linear time,[in Proc. 12th ACM SIGKDD
Int. Conf. Knowl. Disc. Data Mining, 2006,
DOI: 10.1145/1150402.1150429.

[5] S. Shalev-Shwartz, Y. Singer, and N. Srebro,
BPegasos: Primal estimated sub-gradient
solver for SVM,[in Proc. 24th Int. Conf.
Mach. Learn., 2007, DOI: 10.1145/1273496.
1273598.

[6] C.-J. Hsieh, K.-W. Chang, C.-J. Lin,
S. S. Keerthi, and S. Sundararajan, BA dual
coordinate descent method for large-scale
linear SVM,[in Proc. 25th Int. Conf. Mach.
Learn., 2008, DOI: 10.1145/1390156.
1390208. [Online]. Available: http://www.
csie.ntu.edu.tw/~cjlin/papers/cddual.pdf.

[7] R.-E. Fan, K.-W. Chang, C.-J. Hsieh,
X.-R. Wang, and C.-J. Lin. (2008).
LIBLINEAR: A library for large linear
classification. J. Mach. Learn. Res. [Online].
9, pp. 1871–1874. Available: http://www.
csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf

[8] C.-C. Chang and C.-J. Lin. (2011). LIBSVM:
A library for support vector machines.
ACM Trans. Intell. Syst. Technol. [Online].
2, pp. 27:1–27:27. Available: http://www.
csie.ntu.edu.tw/~cjlin/libsvm

[9] Y.-W. Chang, C.-J. Hsieh, K.-W. Chang,
M. Ringgaard, and C.-J. Lin. (2010). Training
and testing low-degree polynomial data
mappings via linear SVM. J. Mach. Learn. Res.
[Online]. 11, pp. 1471–1490. Available:
http://www.csie.ntu.edu.tw/~cjlin/papers/
lowpoly_journal.pdf

[10] S. S. Keerthi and C.-J. Lin, BAsymptotic
behaviors of support vector machines with
Gaussian kernel,[Neural Comput., vol. 15,
no. 7, pp. 1667–1689, 2003.

[11] Z. S. Harris, BDistributional structure,[
Word, vol. 10, pp. 146–162, 1954.

[12] F.-L. Huang, C.-J. Hsieh, K.-W. Chang, and
C.-J. Lin. (2010). Iterative scaling and
coordinate descent methods for maximum
entropy. J. Mach. Learn. Res. [Online].
11, pp. 815–848. Available: http://www.
csie.ntu.edu.tw/~cjlin/papers/maxent_
journal.pdf

[13] G.-X. Yuan, K.-W. Chang, C.-J. Hsieh,
and C.-J. Lin. (2010). A comparison
of optimization methods and software
for large-scale L1-regularized linear
classification. J. Mach. Learn. Res. [Online].
11, pp. 3183–3234. Available: http://www.
csie.ntu.edu.tw/~cjlin/papers/l1.pdf

[14] O. L. Mangasarian, BA finite Newton
method for classification,[Optim. Methods
Softw., vol. 17, no. 5, pp. 913–929, 2002.

[15] A. Y. Ng, BFeature selection, L1 vs. L2

regularization, and rotational invariance,[in
Proc. 21st Int. Conf. Mach. Learn., 2004, DOI:
10.1145/1015330.1015435.

[16] R. Tibshirani, BRegression shrinkage
and selection via the lasso,[J. Roy. Stat.
Soc. B, vol. 58, pp. 267–288, 1996.

[17] D. L. Donoho and Y. Tsaig, BFast solution
of ‘1-norm minimization problems when the

solution may be sparse,[IEEE Trans. Inf.
Theory, vol. 54, no. 11, pp. 4789–4812,
Nov. 2008.

[18] H. Zou and T. Hastie, BRegularization
and variable selection via the elastic net,[
J. Roy. Stat. Soc. B (Stat. Methodol.), vol. 67,
no. 2, pp. 301–320, 2005.

[19] Y.-J. Lee and O. L. Mangasarian, BRSVM:
Reduced support vector machines,[in Proc.
1st SIAM Int. Conf. Data Mining, 2001.
[Online]. Available: http://www.siam.org/
proceedings/datamining/2001/dm01.php.

[20] J. Shi, W. Yin, S. Osher, and P. Sajda,
BA fast hybrid algorithm for large scale
‘1-regularized logistic regression,[
J. Mach. Learn. Res., vol. 11, pp. 713–741,
2010.

[21] K.-W. Chang, C.-J. Hsieh, and C.-J. Lin.
(2008). Coordinate descent method
for large-scale L2-loss linear SVM. J. Mach.
Learn. Res. [Online]. 9, pp. 1369–1398.
Available: http://www.csie.ntu.edu.tw/
~cjlin/papers/cdl2.pdf

[22] G.-X. Yuan, C.-H. Ho, and C.-J. Lin. (2011).
An improved GLMNET for ‘1-regularized
logistic regression and support vector
machines, Nat. Taiwan Univ., Taipei,
Taiwan, Tech. Rep. [Online]. Available:
http://www.csie.ntu.edu.tw/~cjlin/papers/
long-glmnet.pdf

[23] P. S. Bradley and O. L. Mangasarian,
BMassive data discrimination via linear
support vector machines,[Optim. Methods
Softw., vol. 13, no. 1, pp. 1–10, 2000.

[24] V. Franc and S. Sonnenburg, BOptimized
cutting plane algorithm for support vector
machines,[in Proc. 25th Int. Conf. Mach.
Learn., 2008, pp. 320–327.

[25] C. H. Teo, S. Vishwanathan, A. Smola, and
Q. V. Le, BBundle methods for regularized
risk minimization,[J. Mach. Learn. Res.,
vol. 11, pp. 311–365, 2010.

[26] L. Bottou, Stochastic Gradient Descent
Examples, 2007. [Online]. Available:
http://leon.bottou.org/projects/sgd.

[27] S. S. Keerthi and D. DeCoste, BA modified
finite Newton method for fast solution of
large scale linear SVMs,[J. Mach. Learn.
Res., vol. 6, pp. 341–361, 2005.

[28] C.-J. Lin, R. C. Weng, and S. S. Keerthi.
(2008). Trust region Newton method for
large-scale logistic regression. J. Mach. Learn.
Res. [Online]. 9, pp. 627–650. Available:
http://www.csie.ntu.edu.tw/~cjlin/papers/
logistic.pdf

[29] T. P. Minka, A Comparison of Numerical
Optimizers for Logistic Regression, 2003.
[Online]. Available: http://research.
microsoft.com/~minka/papers/logreg/.

[30] J. Goodman, BSequential conditional
generalized iterative scaling,[in Proc. 40th
Annu. Meeting Assoc. Comput. Linguist., 2002,
pp. 9–16.

[31] R. Jin, R. Yan, J. Zhang, and
A. G. Hauptmann, BA faster iterative
scaling algorithm for conditional exponential
model,[in Proc. 20th Int. Conf. Mach. Learn.,
2003, pp. 282–289.

[32] P. Komarek and A. W. Moore, BMaking
logistic regression a core data mining tool:
A practical investigation of accuracy, speed,
and simplicity,[Robotics Inst., Carnegie
Mellon Univ., Pittsburgh, PA, Tech. Rep.
TR-05-27, 2005.

[33] H.-F. Yu, F.-L. Huang, and C.-J. Lin, BDual
coordinate descent methods for logistic
regression and maximum entropy
models,[Mach. Learn., vol. 85, no. 1–2,
pp. 41–75, Oct. 2011. [Online]. Available:

http://www.csie.ntu.edu.tw/~cjlin/papers/
maxent_dual.pdf.

[34] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani,
B1-norm support vector machines,[in
Advances in Neural Information Processing
Systems 16, S. Thrun, L. Saul, and
B. Schölkopf, Eds. Cambridge, MA:
MIT Press, 2004.

[35] G. M. Fung and O. L. Mangasarian, BA
feature selection Newton method for support
vector machine classification,[Comput.
Optim. Appl., vol. 28, pp. 185–202, 2004.

[36] O. L. Mangasarian, BExact 1-norm support
vector machines via unconstrained convex
differentiable minimization,[J. Mach.
Learn. Res., vol. 7, pp. 1517–1530, 2006.

[37] K. Koh, S.-J. Kim, and S. Boyd. (2007).
An interior-point method for large-scale
L1-regularized logistic regression. J. Mach.
Learn. Res. [Online]. 8, pp. 1519–1555.
Available: http://www.stanford.edu/~boyd/
l1_logistic_reg.html

[38] A. Genkin, D. D. Lewis, and D. Madigan,
BLarge-scale Bayesian logistic regression
for text categorization,[Technometrics,
vol. 49, no. 3, pp. 291–304, 2007.

[39] S. Yun and K.-C. Toh, BA coordinate gradient
descent method for L1-regularized convex
minimization,[Comput. Optim. Appl., vol. 48,
no. 2, pp. 273–307, 2011.

[40] G. Andrew and J. Gao, BScalable training
of L1-regularized log-linear models,[in
Proc. 24th Int. Conf. Mach. Learn., 2007,
DOI: 10.1145/1273496.1273501.

[41] J. H. Friedman, T. Hastie, and R. Tibshirani,
BRegularization paths for generalized
linear models via coordinate descent,[J.
Stat. Softw., vol. 33, no. 1, pp. 1–22, 2010.

[42] J. Liu, J. Chen, and J. Ye, BLarge-scale sparse
logistic regression,[in Proc. 15th ACM
SIGKDD Int. Conf. Knowl. Disc. Data Mining,
2009, pp. 547–556.

[43] R. Tomioka, T. Suzuki, and M. Sugiyama,
BSuper-linear convergence of dual
augmented Lagrangian algorithm for
sparse learning,[J. Mach. Learn. Res.,
vol. 12, pp. 1537–1586, 2011.

[44] M. Schmidt, G. Fung, and R. Rosales,
Optimization methods for L1-regularization,
Univ. British Columbia, Vancouver, BC,
Canada, Tech. Rep. TR-2009-19, 2009.

[45] C.-J. Lin and J. J. Moré, BNewton’s
method for large-scale bound constrained
problems,[SIAM J. Optim., vol. 9,
pp. 1100–1127, 1999.

[46] Z.-Q. Luo and P. Tseng, BOn the convergence
of coordinate descent method for convex
differentiable minimization,[J. Optim.
Theory Appl., vol. 72, no. 1, pp. 7–35, 1992.

[47] T. Joachims, BMaking large-scale SVM
learning practical,[in Advances in Kernel
MethodsVSupport Vector Learning,
B. Schölkopf, C. J. C. Burges, and
A. J. Smola, Eds. Cambridge, MA:
MIT Press, 1998, pp. 169–184.

[48] J. H. Friedman, T. Hastie, H. Höfling, and
R. Tibshirani, BPathwise coordinate
optimization,[Ann. Appl. Stat., vol. 1, no. 2,
pp. 302–332, 2007.

[49] S. J. Wright, R. D. Nowak, and
M. A. Figueiredo, BSparse reconstruction
by separable approximation,[IEEE
Trans. Signal Process., vol. 57, no. 7,
pp. 2479–2493, Jul. 2009.

[50] C.-W. Hsu and C.-J. Lin, BA comparison
of methods for multi-class support vector
machines,[IEEE Trans. Neural Netw.,
vol. 13, no. 2, pp. 415–425, Mar. 2002.

Yuan et al. : Recent Advances of Large-Scale Linear Classification

2600 Proceedings of the IEEE | Vol. 100, No. 9, September 2012

[51] R. Rifkin and A. Klautau, BIn defense of
one-vs-all classification,[J. Mach. Learn. Res.,
vol. 5, pp. 101–141, 2004.

[52] E. L. Allwein, R. E. Schapire, and Y. Singer,
BReducing multiclass to binary: A unifying
approach for margin classifiers,[J. Mach.
Learn. Res., vol. 1, pp. 113–141, 2001.

[53] T.-K. Huang, R. C. Weng, and C.-J. Lin.
(2006). Generalized Bradley-Terry models
and multi-class probability estimates. J.
Mach. Learn. Res. [Online]. 7, pp. 85–115.
Available: http://www.csie.ntu.edu.tw/
~cjlin/papers/generalBT.pdf

[54] L. Bottou, C. Cortes, J. Denker, H. Drucker,
I. Guyon, L. Jackel, Y. LeCun, U. Muller,
E. Sackinger, P. Simard, and V. Vapnik,
BComparison of classifier methods: A case
study in handwriting digit recognition,[in
Proc. Int. Conf. Pattern Recognit., 1994,
pp. 77–87.

[55] S. Knerr, L. Personnaz, and G. Dreyfus,
BSingle-layer learning revisited: A stepwise
procedure for building and training a
neural network,[in Neurocomputing:
Algorithms, Architectures and Applications,
J. Fogelman, Ed. New York:
Springer-Verlag, 1990.

[56] J. H. Friedman, BAnother approach to
polychotomous classification,[Dept. Stat.,
Stanford Univ., Stanford, CA, Tech. Rep.
[Online]. Available: http://www-stat.
stanford.edu/~jhf/ftp/poly.pdf

[57] T.-L. Huang, BComparison of L2-regularized
multi-class linear classifiers,[M.S. thesis,
Dept. Comput. Sci. Inf. Eng., Nat. Taiwan
Univ., Taipei, Taiwan, 2010.

[58] J. C. Platt, N. Cristianini, and
J. Shawe-Taylor, BLarge margin DAGs
for multiclass classification,[in Advances
in Neural Information Processing Systems,
vol. 12. Cambridge, MA: MIT Press,
2000, pp. 547–553.

[59] J. Weston and C. Watkins, BMulti-class
support vector machines,[in Proc. Eur.
Symp. Artif. Neural Netw., M. Verleysen, Ed.,
Brussels, 1999, pp. 219–224.

[60] K. Crammer and Y. Singer, BOn the
algorithmic implementation of multiclass
kernel-based vector machines,[J.
Mach. Learn. Res., vol. 2, pp. 265–292,
2001.

[61] Y. Lee, Y. Lin, and G. Wahba, BMulticategory
support vector machines,[J. Amer. Stat.
Assoc., vol. 99, no. 465, pp. 67–81, 2004.

[62] C.-J. Lin. (2002, Sep.). A formal analysis of
stopping criteria of decomposition methods
for support vector machines. IEEE Trans.
Neural Netw. [Online]. 13(5), pp. 1045–1052.
Available: http://www.csie.ntu.edu.tw/
~cjlin/papers/stop.ps.gz

[63] S. S. Keerthi, S. Sundararajan, K.-W. Chang,
C.-J. Hsieh, and C.-J. Lin, BA sequential dual
method for large scale multi-class linear
SVMs,[in Proc. 14th ACM SIGKDD Int.
Conf. Knowl. Disc. Data Mining, 2008,
pp. 408–416. [Online]. Available: http://
www.csie.ntu.edu.tw/~cjlin/papers/
sdm_kdd.pdf.

[64] A. L. Berger, V. J. Della Pietra, and
S. A. Della Pietra, BA maximum entropy
approach to natural language processing,[
Comput. Linguist., vol. 22, no. 1, pp. 39–71,
1996.

[65] J. Lafferty, A. McCallum, and F. Pereira,
BConditional random fields: Probabilistic
models for segmenting and labeling
sequence data,[in Proc. 18th Int. Conf.
Mach. Learn., 2001, pp. 282–289.

[66] R. Malouf, BA comparison of algorithms for
maximum entropy parameter estimation,[in

Proc. 6th Conf. Natural Lang. Learn., 2002,
DOI: 10.3115/1118853.1118871.

[67] J. N. Darroch and D. Ratcliff, BGeneralized
iterative scaling for log-linear models,[Ann.
Math. Stat., vol. 43, no. 5, pp. 1470–1480,
1972.

[68] D. C. Liu and J. Nocedal, BOn the limited
memory BFGS method for large scale
optimization,[Math. Programm., vol. 45,
no. 1, pp. 503–528, 1989.

[69] S. Della Pietra, V. Della Pietra, and
J. Lafferty, BInducing features of random
fields,[IEEE Trans. Pattern Anal. Mach.
Intell., vol. 19, no. 4, pp. 380–393,
Apr. 1997.

[70] R. Memisevic, BDual optimization of
conditional probability models,[Dept.
Comput. Sci., Univ. Toronto, Toronto,
ON, Canada, Tech. Rep., 2006.

[71] M. Collins, A. Globerson, T. Koo,
X. Carreras, and P. Bartlett, BExponentiated
gradient algorithms for conditional random
fields and max-margin Markov networks,[
J. Mach. Learn. Res., vol. 9, pp. 1775–1822,
2008.

[72] E. M. Gertz and J. D. Griffin, BSupport vector
machine classifiers for large data sets,[
Argonne Nat. Lab., Argonne, IL, Tech. Rep.
ANL/MCS-TM-289, 2005.

[73] J. H. Jung, D. P. O’Leary, and A. L. Tits,
BAdaptive constraint reduction for training
support vector machines,[Electron. Trans.
Numer. Anal., vol. 31, pp. 156–177, 2008.

[74] Y. Moh and J. M. Buhmann, BKernel
expansion for online preference tracking,[
in Proc. Int. Soc. Music Inf. Retrieval, 2008,
pp. 167–172.

[75] S. Sonnenburg and V. Franc, BCOFFIN:
A computational framework for linear
SVMs,[in Proc. 27th Int. Conf. Mach.
Learn., 2010, pp. 999–1006.

[76] G. Ifrim, G. BakNr, and G. Weikum, BFast
logistic regression for text categorization
with variable-length n-grams,[in Proc.
14th ACM SIGKDD Int. Conf. Knowl. Disc.
Data Mining, 2008, pp. 354–362.

[77] G. Ifrim and C. Wiuf, BBounded
coordinate-descent for biological sequence
classification in high dimensional predictor
space,[in Proc. 17th ACM SIGKDD Int.
Conf. Knowl. Disc. Data Mining, 2011,
DOI: 10.1145/2020408.2020519.

[78] S. Lee and S. J. Wright, BASSET:
Approximate stochastic subgradient
estimation training for support vector
machines,[IEEE Trans. Pattern Anal.
Mach. Intell., 2012.

[79] C. K. I. Williams and M. Seeger, BUsing
the Nyström method to speed up kernel
machines,[in Advances in Neural Information
Processing Systems 13, T. Leen, T. Dietterich,
and V. Tresp, Eds. Cambridge, MA: MIT
Press, 2001, pp. 682–688.

[80] P. Drineas and M. W. Mahoney, BOn the
Nyström method for approximating a gram
matrix for improved kernel-based learning,[
J. Mach. Learn. Res., vol. 6, pp. 2153–2175,
2005.

[81] S. Fine and K. Scheinberg, BEfficient
SVM training using low-rank kernel
representations,[J. Mach. Learn. Res.,
vol. 2, pp. 243–264, 2001.

[82] F. R. Bach and M. I. Jordan, BPredictive
low-rank decomposition for kernel
methods,[in Proc. 22nd Int. Conf. Mach.
Learn., 2005, pp. 33–40.

[83] A. Rahimi and B. Recht, BRandom features
for large-scale kernel machines Advances
in Neural Information Processing Systems.

Cambridge, MA: MIT Press, 2008,
pp. 1177–1184.

[84] D. Achlioptas, BDatabase-friendly random
projections: Johnson-Lindenstrauss with
binary coins,[J. Comput. Syst. Sci., vol. 66,
pp. 671–687, 2003.

[85] P. Li, T. J. Hastie, and K. W. Church,
BVery sparse random projections,[in Proc.
12th ACM SIGKDD Int. Conf. Knowl. Disc.
Data Mining, 2006, pp. 287–296.

[86] K.-P. Lin and M.-S. Chen, BEfficient kernel
approximation for large-scale support vector
machine classification,[in Proc. 11th SIAM
Int. Conf. Data Mining, 2011, pp. 211–222.

[87] Q. Shi, J. Petterson, G. Dror, J. Langford,
A. Smola, A. Strehl, and S. Vishwanathan,
BHash kernels,[in Proc. 12th Int. Conf.
Artif. Intell. Stat., 2009, vol. 5, pp. 496–503.

[88] K. Weinberger, A. Dasgupta, J. Langford,
A. Smola, and J. Attenberg, BFeature
hashing for large scale multitask learning,[
in Proc. 26th Int. Conf. Mach. Learn., 2009,
pp. 1113–1120.

[89] P. Li and A. C. König, Bb-bit minwise
hashing,[in Proc. 19th Int. Conf. World
Wide Web, 2010, pp. 671–680.

[90] P. Li and A. C. König, BTheory and
applications of b-bit minwise hashing,[
Commun. ACM, vol. 54, no. 8, pp. 101–109,
2011.

[91] P. Li, A. Shrivastava, J. Moore, and
A. C. König, BHashing algorithms for
large-scale learning,[Cornell Univ.,
Ithaca, NY, Tech. Rep. [Online]. Available:
http://www.stat.cornell.edu/~li/reports/
HashLearning.pdf

[92] H.-F. Yu, C.-J. Hsieh, K.-W. Chang, and
C.-J. Lin, BLarge linear classification
when data cannot fit in memory,[in Proc.
16th ACM SIGKDD Int. Conf. Knowl. Disc.
Data Mining, 2010, pp. 833–842. [Online].
Available: http://www.csie.ntu.edu.tw/
~cjlin/papers/kdd_disk_decomposition.pdf.

[93] E. Chang, K. Zhu, H. Wang, H. Bai, J. Li,
Z. Qiu, and H. Cui, BParallelizing support
vector machines on distributed computers,[
in Advances in Neural Information Processing
Systems 20, J. Platt, D. Koller, Y. Singer, and
S. Roweis, Eds. Cambridge, MA: MIT
Press, 2008, pp. 257–264.

[94] Z. A. Zhu, W. Chen, G. Wang, C. Zhu, and
Z. Chen, BP-packSVM: Parallel primal
gradient descent kernel SVM,[in Proc. IEEE
Int. Conf. Data Mining, 2009, pp. 677–686.

[95] T. White, Hadoop: The Definitive Guide,
2nd ed. New York: O’Reilly Media, 2010.

[96] H. Robbins and S. Monro, BA stochastic
approximation method,[Ann. Math. Stat.,
vol. 22, no. 3, pp. 400–407, 1951.

[97] J. Kiefer and J. Wolfowitz, BStochastic
estimation of the maximum of a regression
function,[Ann. Math. Stat., vol. 23, no. 3,
pp. 462–466, 1952.

[98] T. Zhang, BSolving large scale linear
prediction problems using stochastic
gradient descent algorithms,[in Proc.
21st Int. Conf. Mach. Learn., 2004,
DOI: 10.1145/1015330.1015332.

[99] L. Bottou and Y. LeCun, BLarge scale online
learning,[Advances in Neural Information
Processing Systems 16. Cambridge, MA:
MIT Press, 2004, pp. 217–224.

[100] A. Bordes, S. Ertekin, J. Weston, and
L. Bottou, BFast kernel classifiers with online
and active learning,[J. Mach. Learn. Res.,
vol. 6, pp. 1579–1619, 2005.

[101] Y. E. Nesterov, BEfficiency of coordinate
descent methods on huge-scale optimization
problems,[Université Catholique de

Yuan et al. : Recent Advances of Large-Scale Linear Classification

Vol. 100, No. 9, September 2012 | Proceedings of the IEEE 2601

Louvain, Louvain-la-Neuve, Louvain,
Belgium, CORE Discussion Paper, Tech.
Rep. [Online]. Available: http://www.ucl.be/
cps/ucl/doc/core/documents/coredp2010_
2web.pdf

[102] P. Richtárik and M. Takáč, BIteration
complexity of randomized block-coordinate
descent methods for minimizing a composite
function,[Schl. Math., Univ. Edinburgh,
Edinburgh, U.K., Tech. Rep., 2011.

[103] A. Bordes, L. Bottou, and P. Gallinari,
BSGD-QN: Careful quasi-Newton stochastic
gradient descent,[J. Mach. Learn. Res.,
vol. 10, pp. 1737–1754, 2009.

[104] A. Bordes, L. Bottou, P. Gallinari, J. Chang,
and S. A. Smith, BErratum: SGD-QN is
less careful than expected,[J. Mach. Learn.
Res., vol. 11, pp. 2229–2240, 2010.

[105] J. Langford, L. Li, and T. Zhang, BSparse
online learning via truncated gradient,[
J. Mach. Learn. Res., vol. 10, pp. 771–801,
2009.

[106] S. Shalev-Shwartz and A. Tewari,
BStochastic methods for L1-regularized
loss minimization,[J. Mach. Learn. Res.,
vol. 12, pp. 1865–1892, 2011.

[107] Y. E. Nesterov, BPrimal-dual subgradient
methods for convex problems,[Math.
Programm., vol. 120, no. 1, pp. 221–259,
2009.

[108] J. Duchi and Y. Singer, BEfficient online
and batch learning using forward backward
splitting,[J. Mach. Learn. Res., vol. 10,
pp. 2899–2934, 2009.

[109] J. Duchi, E. Hazan, and Y. Singer, BAdaptive
subgradient methods for online learning
and stochastic optimization,[J. Mach. Learn.
Res., vol. 12, pp. 2121–2159, 2011.

[110] L. Xiao, BDual averaging methods for
regularized stochastic learning and online
optimization,[J. Mach. Learn. Res., vol. 11,
pp. 2543–2596, 2010.

[111] J. K. Bradley, A. Kyrola, D. Bickson, and
C. Guestrin, BParallel coordinate descent
for L1-regularized loss minimization,[in
Proc. 28th Int. Conf. Mach. Learn., 2011,
pp. 321–328.

[112] J. Langford, L. Li, and A. Strehl, Vowpal
Wabbit, 2007. [Online]. Available:
https://github.com/JohnLangford/vowpal_
wabbit/wiki.

[113] S. Tong, Lessons Learned Developing a
Practical Large Scale Machine Learning
System, Google Research Blog, 2010.
[Online]. Available: http://googleresearch.
blogspot.com/2010/04/lessons-learned-
developing-practical.html.

[114] M. Ferris and T. Munson, BInterior
point methods for massive support vector
machines,[SIAM J. Optim., vol. 13, no. 3,
pp. 783–804, 2003.

[115] K.-W. Chang and D. Roth, BSelective
block minimization for faster convergence of
limited memory large-scale linear models,[
in Proc. 17th ACM SIGKDD Int. Conf. Knowl.

Disc. Data Mining, 2011, DOI: 10.1145/
2020408.2020517.

[116] Y. Censor and S. A. Zenios, Parallel
Optimization: Theory, Algorithms, and
Applications. Oxford, U.K.: Oxford Univ.
Press, 1998.

[117] S. Boyd, N. Parikh, E. Chu, B. Peleato, and
J. Eckstein, BDistributed optimization and
statistical learning via the alternating
direction method of multipliers,[Found.
Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
2011.

[118] D. Gabay and B. Mercier, BA dual algorithm
for the solution of nonlinear variational
problems via finite element approximation,[
Comput. Math. Appl., vol. 2, pp. 17–40, 1976.

[119] P. A. Forero, A. Cano, and G. B. Giannakis,
BConsensus-based distributed support
vector machines,[J. Mach. Learn., vol. 11,
pp. 1663–1707, 2010.

[120] A. Nedić, D. P. Bertsekas, and V. S. Borkar,
BDistributed asynchronous incremental
subgradient methods,[Studies Comput.
Math., vol. 8, pp. 381–407, 2001.

[121] J. Langford, A. Smola, and M. Zinkevich,
BSlow learners are fast,[in Advances in
Neural Information Processing Systems 22,
Y. Bengio, D. Schuurmans, J. Lafferty,
C. K. I. Williams, and A. Culotta, Eds.
Cambridge, MA: MIT Press, 2009,
pp. 2331–2339.

[122] A. Agarwal and J. Duchi, BDistributed
delayed stochastic optimization,[in
Advances in Neural Information Processing
Systems 24. Cambridge, MA: MIT Press,
2011.

[123] H. Yu, J. Yang, and J. Han, BClassifying large
data sets using SVMs with hierarchical
clusters,[in Proc. 9th ACM SIGKDD Int. Conf.
Knowl. Disc. Data Mining, 2003, pp. 306–315.

[124] L. Breiman, BBagging predictors,[Mach.
Learn., vol. 24, no. 2, pp. 123–140,
Aug. 1996.

[125] D. Chakrabarti, D. Agarwal, and
V. Josifovski, BContextual advertising by
combining relevance with click feedback,[in
Proc. 17th Int. Conf. World Wide Web, 2008,
pp. 417–426.

[126] M. Zinkevich, M. Weimer, A. Smola, and
L. Li, BParallelized stochastic gradient
descent,[in Advances in Neural Information
Processing Systems 23, J. Lafferty,
C. K. I. Williams, J. Shawe-Taylor, R. Zemel,
and A. Culotta, Eds. Cambridge, MA:
MIT Press, 2010, pp. 2595–2603.

[127] R. McDonald, K. Hall, and G. Mann,
BDistributed training strategies for the
structured perceptron,[in Proc. 48th
Annu. Meeting Assoc. Comput. Linguist.,
2010, pp. 456–464.

[128] J. Dean and S. Ghemawat, BMapReduce:
Simplified data processing on large clusters,[
Commun. ACM, vol. 51, no. 1, pp. 107–113,
2008.

[129] I. Tsochantaridis, T. Joachims, T. Hofmann,
and Y. Altun, BLarge margin methods

for structured and interdependent output
variables,[J. Mach. Learn. Res., vol. 6,
pp. 1453–1484, 2005.

[130] B. Taskar, C. Guestrin, and D. Koller,
BMax-margin markov networks,[in Advances
in Neural Information Processing Systems 16.
Cambridge, MA: MIT Press, 2004.

[131] F. Sha and F. C. N. Pereira, BShallow parsing
with conditional random fields,[in Proc.
HLT-NAACL, 2003, pp. 134–141.

[132] S. Vishwanathan, N. N. Schraudolph,
M. W. Schmidt, and K. Murphy,
BAccelerated training of conditional
random fields with stochastic gradient
methods,[in Proc. 23rd Int. Conf. Mach.
Learn., 2006, pp. 969–976.

[133] N. N. Schraudolph, J. Yu, and S. Gunter,
BA stochastic quasi-Newton method for
online convex optimization,[in Proc.
11th Int. Conf. Artif. Intell. Stat., 2007,
pp. 433–440.

[134] P.-J. Chen, BNewton methods for conditional
random fields,[M.S. thesis, Dept. Comput.
Sci. Inf. Eng., National Taiwan University,
Taipei, Taiwan, 2009.

[135] T. Joachims, T. Finley, and C.-N. J. Yu,
BCutting-plane training of structural SVMs,[
J. Mach. Learn., vol. 77, no. 1, 2008,
DOI: 10.1007/s10994-009-5108-8.

[136] J. E. Kelley, BThe cutting-plane method for
solving convex programs,[J. Soc. Ind. Appl.
Math., vol. 8, no. 4, pp. 703–712, 1960.

[137] N. D. Ratliff, J. A. Bagnell, and
M. A. Zinkevich, B(Online) subgradient
methods for structured prediction,[in
Proc. 11th Int. Conf. Artif. Intell. Stat., 2007,
pp. 380–387.

[138] V. Vapnik, Statistical Learning Theory.
New York: Wiley, 1998.

[139] I. Daubechies, M. Defrise, and C. De Mol,
BAn iterative thresholding algorithm for
linear inverse problems with a sparsity
constraint,[Commun. Pure Appl. Math.,
vol. 57, pp. 1413–1457, 2004.

[140] M. A. T. Figueiredo, R. Nowak, and
S. Wright, BGradient projection for sparse
reconstruction: Applications to compressed
sensing and other inverse problems,[IEEE J.
Sel. Top. Signal Process., vol. 1, no. 4,
pp. 586–598, Dec. 2007.

[141] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and
D. Gorinevsky, BAn interior point method
for large-scale L1-regularized least squares,[
IEEE J. Sel. Top. Signal Process., vol. 1, no. 4,
pp. 606–617, Dec. 2007.

[142] J. Duchi, S. Shalev-Shwartz, Y. Singer, and
T. Chandra, BEfficient projections onto
the L1-ball for learning in high dimensions,[
in Proc. 25th Int. Conf. Mach. Learn., 2008,
DOI: 10.1145/1390156.1390191.

[143] A. Beck and M. Teboulle, BA fast iterative
shrinkage-thresholding algorithm for linear
inverse problems,[SIAM J. Imag. Sci., vol. 2,
no. 1, pp. 183–202, 2009.

Yuan et al. : Recent Advances of Large-Scale Linear Classification

2602 Proceedings of the IEEE | Vol. 100, No. 9, September 2012

ABOUT THE AUTHORS

Guo-Xun Yuan received the B.S. degree in

computer science from the National Tsinghua

University, Hsinchu, Taiwan, and the M.S. degree

in computer science from the National Taiwan

University, Taipei, Taiwan. He is currently working

towards the Ph.D. degree at the University of

California Davis, Davis.

His research interest is large-scale data

classification.

Chia-Hua Ho received the B.S. degree in computer

science from the National Taiwan University,

Taipei, Taiwan, in 2010, where he is currently

working towards the M.S. degree at the Depart-

ment of Computer Science.

His research interests are machine learning

and data mining.

Chih-Jen Lin (Fellow, IEEE) received the B.S. de-

gree in mathematics from the National Taiwan

University, Taipei, Taiwan, in 1993 and the Ph.D.

degree in industrial and operations engineering

from the University of Michigan, Ann Arbor, in

1998.

He is currently a Distinguished Professor at the

Department of Computer Science, National Taiwan

University. His major research areas include

machine learning, data mining, and numerical

optimization. He is best known for his work on support vector machines

(SVMs) for data classification. His software LIBSVM is one of the most

widely used and cited SVM packages. Nearly all major companies apply

his software for classification and regression applications.

Prof. Lin received many awards for his research work. A recent one is

the ACM KDD 2010 best paper award. He is an Association for Computing

Machinery (ACM) distinguished scientist for his contribution to machine

learning algorithms and software design. More information about him

and his software tools can be found at http://www.csie.ntu.edu.tw/~cjlin.

Yuan et al. : Recent Advances of Large-Scale Linear Classification

Vol. 100, No. 9, September 2012 | Proceedings of the IEEE 2603

