
Tomita-Style Generalised LR ParsersElizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain
December 24, 2000
!()+,-./0123456Department of Computer ScienceEgham, Surrey TW20 0EX, England

AbstractRoughly speaking a parser is a function, associated with a grammar, whichtakes as input a string of symbols and produces as output the derivations of thatstring if it is in the language generated by the grammar and an error messageotherwise. In this report we undertake a theoretical study of a general pars-ing technique based on the standard linear LR parsing algorithm. This generaltechnique was described and given a practical implementation by Tomita anda corrected version was given by Farshi. We shall show that the problem withTomita's original algorithm lies mainly (but not entirely exclusively) with gram-mars that contain hidden right recursion. The issue is to ensure that when areduction using a right nullable rule is applied, all the possible reductions areexplored. We address this by treating items of the form A ::= � � �, where� �)�, as reductions, allowing the reduction to be performed when only � has berecognised. We give a modi�cation of Tomita's original algorithm, based on amodi�cation of the underlying parse table, which we prove is correct. It is alsomore e�cient than Farshi's modi�cation. We have implemented a parser gener-ator which generates parsers based both on Tomita's original algorithm and onour modi�cation, and we give statistics on the behaviours of both types of parser.
This document is c Elizabeth Scott, Adrian Johnstone and Sadaf Hus-sain 2000.Permission is given to freely distribute this document electronically andon paper. You may not change this document or incorporate parts of itin other documents: it must be distributed intact.

CONTENTS iContents1 Background 21.1 Traversing a DFA using a given input string 32 The graph structured stack (GSS) 52.1 Notation and properties of the GSS 62.2 Constructing a GSS for input a1 : : : an 72.3 Dealing with �-rules 112.4 Further issues to be considered 123 Tomita's algorithms 133.1 Processing reductions 133.2 Storing pending reductions 163.3 Tomita's �rst stage algorithm 174 Tomita's algorithm applied to general grammars 194.1 Algorithm 1e 194.2 An example with hidden left recursion 204.3 The (in)correctness of Algorithm 1e 234.4 Hidden right recursion 244.5 Right nullable rules 264.6 Merging symbol nodes 315 Farshi's algorithm 345.1 Farshi's recognition algorithm for general grammars 345.2 The e�ciency of Farshi's algorithm 355.3 A modi�ed version of Farshi's algorithm 376 GLR parsing with a modi�ed DFA 396.1 The reduction modi�ed DFA and an example 396.2 Generalised reduction modi�ed LR parser (GRMLR) 416.3 The e�ciency of the algorithm 436.4 Correctness of the algorithm 446.4.1 RM-Parse tables 456.4.2 Table based parsers 456.4.3 Equivalence of LR(1)- and RM-parsers 466.4.4 Correctness of the GRMLR algorithm 496.5 The reduction modi�ed DFA and LR(1) grammars 556.5.1 The correctness of reduced RM-tables for LR(1) grammars 566.5.2 Resolved RM-parse tables 587 Experimental results 627.1 The experiments 627.2 The results 63

CONTENTS 1Tomita-Style Generalised LR ParsersRoughly speaking a parser is a function, associated with a grammar, whichtakes as input a string of symbols and produces as output the derivations of thatstring if it is in the language generated by the grammar and an error messageotherwise. It is sometimes claimed that parsing is `done'. Such claims are some-what surprising, particularly when we recall that it is still not known whetherall context free grammars, or even all context free languages, admit a linear timeparser. It is certainly the case that parsing is well enough understood for e�cientparsers to be easily generated in many cases, but being able to build a bridgewhich we are fairly sure will not fall down is not the same thing has having a fullyunderstood mathematical theory of forces. For example, the grammars normallyused for C do not fall into the class of grammars for which there is a standardlinear time parser. In this case the problem is with the ambiguity of certain con-structs such as if then else. There are practical solutions to these problems,in the case of the if then else ambiguity one of the many di�erent possiblederivations is selected (the one which corresponds to the `longest match'). Suchsolutions provide parsers which behave in a way which is satisfactory for the endusers, but the `parsers' do not produce all derivations for a given input string andhence are theoretically incomplete. Furthermore, it is relatively easy to constructa grammar which does not have the properties required for the known linear-parser generation techniques to be applied (i.e. a non-LR grammar), and it isoften di�cult to transform such a grammar into an appropriate form.A properly understood underlying mathematical model which allows reason-ing about the behaviour of objects and which feeds into good engineering practiceis the basis of any scienti�c academic subject. The above observations highlighttwo areas where the underlying theory of parser generation needs to be extended.We need a better understanding of the properties which make a grammar LR(1),in order to allow such grammars to be e�ectively constructed by non-specialists,and we need further study of techniques for constructing parsers for non-LR(1)grammars. The latter is particularly important in cases where we are not free tochange the language to make it more amenable to parsing, for example in naturallanguage parsing.In this report we undertake a theoretical study of a general parsing techniquebased on the standard linear LR parsing algorithm. This general technique wasdescribed and given a practical implementation by Tomita [Tom86]. However,there was no mathematical analysis of the algorithm and it was subsequentlyfound to be non-terminating in certain cases. Farshi [NF91] produced a modi�-cation of Tomita's algorithm which appears to correct the problem, but Farshihimself states: \Although no formal proof was provided here but it is believedthat the modi�ed algorithm is a precompiled equivalent of Earley's algorithmwith respect to its coverage."There is another algorithm given by Nederhof and Sarbo [NS96] which ad-dresses the problem with Tomita's algorithm by essentially carrying out � removal`on the y'. The paper includes a proof of the correctness of the algorithm. How-ever, the focus of the paper is on the problem of hidden left recursion, whichNederhof and Sarbo claim is also a problem for Nederhof's cancellation parsing

Background 2algorithm. Since we shall show that the problem with Tomita's algorithm canbe successfully addressed by considering right nullable production rules, we shallnot discuss Nederhof and Sarbo's algorithm further in this report.Tomita constructed his algorithm in stages. The �rst stage algorithm wasapplied only to �-free grammars. This was then extended to general context-freegrammars, but the extension was later found to fail to terminate on grammarswith hidden left recursion. We shall study Tomita's �rst stage algorithm andexplain the problem with applying it to grammars which contain �-rules. As aresult of this analysis we shall give a modi�cation, based on a modi�cation of theunderlying parse table, which we can prove is correct. It is also more e�cient thanFarshi's modi�cation. We shall show that the problem with Tomita's �rst stagealgorithm lies mainly (but not entirely exclusively) with grammars that containhidden right recursion. The issue is to ensure that when a reduction using a rightnullable rule is applied, all the possible reductions are explored. We address thisby treating items of the form A ::= � ��, where � �)�, as reductions, allowing thereduction to be performed when only � has been recognised.We have implemented a parser generator which generates parsers based bothon Tomita's �rst stage algorithm and on our modi�cation, and at the end of thisreport we shall give statistics on the behaviours of both types of parser.In a later paper we shall discuss a di�erent approach to constructing gen-eralised parsers in which the regular parts of the language are parsed using ane�cient �nite state automaton, and the self-embedding is handled using recursivecalls to sub-automata. Again we shall prove that the parsers constructed usingthis algorithm are correct.1 BackgroundLR parsers use a grammar-related deterministic �nite state automaton (DFA)and a stack to parse an input string. The DFA is traversed as input symbolsare recognised, and the path taken during this traversal is recorded on the stack.When an accepting state in the DFA is reached, the path must be re-traced upto a certain point and a new route taken (this is performing a `reduction'). Thisis implemented by popping the appropriate number of states o� the stack.It is possible for the DFA to present more than one choice of action to theparser, an accepting state may also have a transition on the next input symbol(a shift/reduce conict), and there may be more than one path re-tracing whichis possible (a reduce/reduce conict). In such cases the standard LR parsingalgorithm is inadequate; it does not specify how to make a choice of action whenseveral possibilities exist.Lang [Lan74] proposed a method for exploring all of the possible actions on agiven input string, and outputting a grammar which generates all of the possiblederivations of that string. In this report we describe implementations, based onthis approach, which have been given by Tomita [Tom86] and Farshi [NF91], andwe give another implementation which is essentially the same as Tomita's butwhich is based on a modi�cation of the underlying DFA, obtained by extendingthe set of states which are accepting states. In this section we shall discuss the

Background 3underlying LR(1) parsing technique in a way which will allow us to reason aboutTomita's algorithm.1.1 Traversing a DFA using a given input stringIn the following discussion we shall use LR(1) DFAs, but the discussion appliesequally well to LR(0), SLR(1) and LALR(1) DFAs.The basic idea is to maintain a list of DFA states which can be reached bystarting at the start state and traversing the DFA using the input symbols seenso far. When an input symbol, a say, is read any state which can be reachedfrom a state in the current list along a transition labelled a is added to the newlist of current states. When an accepting state (a state which contains an item(A ::= ��; b) say where b is the next input symbol) is reached the path labelled �which was taken to reach that state is re-traced and the state which can then bereached along a transition labelled A is also added to the list of current states.This process is very similar to the `subset construction' which is used to constructa DFA from an NFA: at any point in the procedure we have a current set X ofstates, we make a new set Xa consisting of those states which can be reachedfrom a state in X along a transition labelled a, and then we form the �-closure ofXa, i.e. we construct the smallest set Y with the property that Xa � Y and if astate n can be reached from a state m in Y along an �-transition then n is in Y .The main di�erence between the DFA-based general parser and the NFAtraverser which forms the basis of the subset construction is that in the latterthe �-closure contains all the states which can be reached via �-transitions, whilethe reduction-closure in the former can only contain states which can be reachedby re-tracing a path taken (we refer to these as input related reduction-closures).The following example illustrates this point.S 0 ::= SS ::= Ta j dTadT ::= a'& $%�
 �	�
 �	�
 �	�
 �	�� �� �
 �	�
 �	�
 �	@@@R PPPPqXXXXXz- ��	 - QQQQsZZZZ~S0 ::= �S; $S ::= �Ta; $S ::= �dTad; $T ::= �a; aS0 ::= S�; $ S ::= d � Tad; $T ::= �a; aT ::= a�; aS ::= T � a; $S ::= Ta�; $ S ::= dT � ad; $S ::= dTa � d; $S ::= dTad�; $S T aad T a da0 143 52 6 7 8?�� �If we construct the reduction-closures which arise from input aad we get:start position: f0g, reduction-closure = f0g = S0.input a: (states reachable from S0) = f1g, reduction-closure = f1; 4; 6g = S1.input a: (states reachable from S1) = f5; 7g, reduction-closure = f3; 5; 7g = S2.input d: (states reachable from S2) = f8g, reduction-closure = f3; 8g = S3.

Background 4The traverser reaches the �nal accept state, state 3, and has consumed all theinput, thus it will erroneously accept the input aad. The problem is that, in thesecond step of the traversal, it is possible to get to state 6 from state 1 via a validreduction but it is not possible to get there by re-tracing a path which has beentaken in the traversal at this stage. Thus we need to restrict reductions and useonly the input related reduction closures.Because we can only perform reductions down paths which have been tra-versed with the current input it is necessary to retain these paths. This is therole of the stack in a traditional LR parser. In this report we shall considervariations on a method devised by Tomita for recording these paths and com-puting the states which can be generated from reductions. In a future paper weshall consider an alternative approach, based on the work of Aycock and Hor-spool [AH99], in which the DFA is modi�ed so that all reductions from a givenstate and next input symbol are valid. It is then no longer necessary to retain theinformation about what paths were taken to a given state. In fact the reductionscan be pre-calculated and included in the DFA when it is initially constructed.Tomita's method for recording a possibly multipath traversal of a DFA isbased on a Graph Structured Stack, which replaces the stack in a traditional LRparser and allows the appropriate input related reduction-closures to be e�cientlycalculated. The method by which Tomita chose to identify the reductions thatneeded to be carried out meant that, if the grammar contained right nullablerules, his basic algorithm did not always correctly identify all reductions thatneeded to be performed. Thus he applied this algorithm only to �-free grammars.Tomita modi�ed his method to allow grammars which contain �, but this modi�-cation results in an algorithm which fails to terminate on grammars which containhidden left recursion. Farshi corrected this problem by returning to Tomita's ba-sic algorithm and augmenting it with a search which ensured that all reductionswere identi�ed even in the case of hidden right recursion. However, the GSSand shared derivation tree produced by Tomita's method are more e�cient, ingeneral, than those produced by Farshi's method. Rekers [Rek92] uses Farshi'salgorithm for generating and traversing the GSS but constructs more e�cientshared parse trees. In the next section we shall de�ne and discuss the GSS whichforms the basis of all the algorithms discussed in this report. In Sections 3 and4 we shall discuss Tomita's algorithms and in Section 5 we shall discuss Farshi'smodi�cation.

The graph structured stack (GSS) 52 The graph structured stack (GSS)Tomita's algorithm takes an input string, a1a2 : : : an, and uses it to traverse aDFA, constructing a Graph Structured Stack (GSS) as it proceeds. This construc-tion is carried out in a series of steps, an initial step and then one step for eachsymbol in the input string.A GSS consists of state nodes, which are labelled with states of the DFA,and a set of symbol nodes, which are labelled with a grammar symbol. The GSSassociated with a speci�c context free grammar and input string a1 : : :an say.The state nodes are grouped together into disjoint sets, an initial set, U0, andone set, Ui, for each element ai of the input string. In the language used in theintroduction, U0 is the input related reduction-closure of the start state of theDFA, and for 1 � i � n we have that Ui is the input related reduction-closureof Ui�1ai, the set of all states which can be reached from a state in Ui�1 along atransition labelled ai.We say that a node is at level i if it is in Ui, and that v 2 Ui has a validreduction if the DFA state, h, which labels v contains an item of the form (A ::=��; ai+1). Conversely, we say that a reduction via the rule A ::= � is valid fora state node v which is at level i and has label h, if the DFA state h containsthe item (A ::= ��; ai+1). In other words, valid reductions are reductions whichcan be applied when the input a1 : : :ai has been read and the lookahead inputsymbol is ai+1.For example, given the grammar and DFA,S 0 ::= SS ::= Ab j abbA ::= a�
 �	�
 �	S0 ::= �S; $S ::= �Ab; $S ::= �abb; $S0 ::= S�; $ S ::= Ab�; $S ::= ab � b; $S A b06 42�
 �	 S ::= a � bb; $A ::= a�; b�
 �	S ::= A � b; $ �
 �	S ::= abb�; $1A � a; b 5 3a b b�� ���� �?'& $%- --XXXz -the input ab$ results in the GSS �
 �	�
 �	S0 ::= �S; $S ::= �Ab; $S ::= �abb; $ S0 ::= S�; $S ::= Ab�; $S ::= ab � b; $�
 �	S ::= a � bb; $A ::= a�; b'& $% #" !�
 �	S ::= A � b; $A � a; b aA bbSU0 U1 U3�� �PPPPi �� �� �6corresponding to the stack activity

The graph structured stack (GSS) 60 read a 0a3perform reduction0A5 read b 0a3 perform reduction0A5b2 4b 0S6U0 U1 U2- - - -This is obtained by beginning in state 0 with a stack which just contains 0. Theinput symbol a is read, and shifted on to the stack along with the next state, 3. Atthis point there are two possible actions, a shift to state 2 and a reduction. Thestack is split and both actions are applied. The reduction is applied �rst, creatinga new stack by popping o� the top two symbols and pushing on A followed bystate 5. In the GSS the base state, 0, of the two stacks is shared. Now the symbolb is read and shifted on to the top of both stacks. There is no further action thatcan be performed from state 2, but from state 4 there is a valid reduction whichresults in a third stack splitting. The state 6 is the accepting state of the DFA,so the input is accepted.We now give some general properties of a GSS, and then we shall describe thegeneral GSS construction, without describing the `book-keeping' (the identi�ca-tion and storage of pending reductions) that a full algorithm needs to do in orderto be able to carry out the construction. The book-keeping will be discussedwhen we consider the various parsing algorithms.2.1 Notation and properties of the GSSThe GSS is a connected directed bipartite graph on the set of state nodes andthe set of symbol nodes, i.e. all successors and predecessors of a symbol node arestate nodes and all successors and predecessors of a state node are symbol nodes.The GSS constructed from input a1 : : :an contains a subgraph of the form��� ai� � ���hkif there is a node in Ui�1 labelled k, and node in Ui labelled h, and a transitionlabelled ai from k to h in the DFA.#" !...A ::= � � ai�; b... #" !...A ::= �ai � �; b...-aik h(This corresponds to shifting the symbol ai in the parser.) The GSS contains asubgraph of the form ��� B� � ���hk u vwhere u 2 Uj and v 2 Ui, if and only if there is a subgraph in the GSS of theform

The graph structured stack (GSS) 7��� x1� � ���lk xm� � �u wwhere u 2 Uj , w 2 Ui, A ::= x1 : : : xm is a grammar rule, and there is a transitionfrom k to h labelled A in the DFA. (This corresponds to forming an input relatedreduction from state l.) ��� x1 ���lk xm� � � ���hA wvGSS...B ::= � � A�; bA ::= �x1::xm; ai+1... k ...A ::= x1::xm�; ai+1......B ::= �A � �; b... lhQQQQs - -: : :A x1 xmDFA � ��PPPPPPi'& $%�� ���� �� u
We say that the node v is reduction related to the node w via a path of length2m and a symbol node labelled A.A set of state nodes, U , in the GSS is input related reduction-closed if for eachnode, w say, with label l which is at level i and for each valid reduction in w, i.e.for each item (A ::= x1 : : : xm�; ai+1) in l, if k is the label of a state node whichis reachable in the GSS from w along a path of length 2m then there is a nodein U which is at level i and has label h, where h is the state in the DFA whichcan be reached from k along the transition labelled A. In other words, if for allvalid reductions A ::= x1 : : : xm in a node in w 2 U there is a node v in U whichis reduction related to w via a path of length 2m and a symbol node labelled A.The sets Ui in the GSS are all input related reduction-closed.When the GSS has been constructed the �nal set, Un, of state nodes is exam-ined. The input string is in the language if and only if Un contains the acceptingstate of the DFA.Note: Because there is only a path of length 2 in the GSS from a state nodewith label h to a state node with label k if there is a transition from k to h inthe DFA, ��� x ���hk�� ��...B ::= � � x�; b... kDFA � ��� ��...... h GSSB ::= �x � �; b-xall the symbol nodes which are successors of a given state node in the GSSwill have the same label. This label will be the (unique) symbol which labelstransitions to h in the DFA.2.2 Constructing a GSS for input a1 : : : anWe shall now describe the basic construction of a GSS for a given DFA and inputstring. (Tomita's basic algorithm does not deal with �-productions and for the

The graph structured stack (GSS) 8moment we shall assume that our grammars are �-free. We shall consider generalgrammars later.) We illustrate the process using the following example:S0 ::= SS ::= TbT ::= Tb j DT j ab j a j bD ::= a j b'
&

$
%S0 ::= �S; $S ::= �Tb; $T ::= �Tb; bT ::= �DT; bT ::= �ab; bT ::= �a; bT ::= �b; bD ::= �a; abD ::= �b; ab�
 �	S0 ::= S�; $S ?4

0 #" !1T ::= a � b; bT ::= a�; bD ::= a�; ab-a �
 �	T ::= ab�; b9-b�� ��T ::= b�; bD ::= b�; b-b 2 T ::= D � T; bT ::= �Tb; bT ::= �DT; bT ::= �ab; bT ::= �a; bT ::= �b; bD 3
�� ��� ��S ::= T � b; $T ::= T � b; b5@@@@@RT :D �� ��T ::= DT �; bT ::= T � b; b- �
 �	T ::= Tb�; b 7b�� ��S ::= Tb�; $T ::= Tb�; b-b 6-XXXXXy ab '& $%QQQQk D ::= �a; abD ::= �b; ab CCCCW 8T

input: abbWe begin in the start state, state 0, of the DFA and construct a state node, v0,labelled 0 in the GSS. If the grammar is �-free then there will be no reductions instate 0 thus U0 = fv0g and we read the �rst input symbol, a1 say. In the DFA wemove to state m, say, which is the target of the transition labelled a1 from state0. We construct a state node, v1, in the GSS labelled m, which is added to theset U1, we construct a symbol node labelled a1, and we make this symbol node asuccessor of v1 and a predecessor of v0. In our example the input consumed is aand we move to state 1. ��� a� � ���10 v1v0Next we look at state m in the DFA to see if it has any reductions on thenext input symbol a2, i.e. to see if v1 has any valid reductions. Since we haveonly consumed one input symbol, such items must actually be of the form (A ::=a1�; a2). In our example, the state node labelled 1 contains two reductions (T ::=a�; b) and (D ::= a�; b). We retrace the path of length 2 from v1 to reach the statenode v0. We then traverse the DFA from state 0 along the transitions labelled Dand T to reach states 3 and 5. We create state nodes v2 and v3 labelled 3 and5 and add them to the set U1, and we create symbols node which has v0 as asuccessor and v2 and v3 as predecessors.

The graph structured stack (GSS) 9��� a� � ���10 DT �� ������35QQQk SSSSSov0 v1v2v3We then check the newly added state nodes for valid reductions, and continuethe process until U1 is input related reduction-closed. In our example, the newlyadded nodes don't have any valid reductions so this step of the process is complete.In general, at the beginning of step i we have a set Ui�1 of state nodes in theGSS, and remaining input ai : : :am$. For each state node, labelled k say, in Ui�1we see if there is a transition in the DFA labelled ai from k to a state m. Foreach such transition we �rst check to see if there is a state node in Ui labelled m.If there is not we create such a state node in the GSS and add it to Ui. If thestate labelled m has a successor labelled ai then add an arrow from this node tothe node in Ui�1 labelled k. Otherwise, create a successor node of m labelled aiand make this node a predecessor of the node labelled m. When all the nodesin Ui�1 have been dealt with we have Ui = Ui�1ai. In our example at step 2 wehave U1 = f1; 3; 5g and U1b = f2; 6; 9g.��� a� � ���10 DT �� ������35QQQk SSSSSo b� � ���9bb�� �� ������26We then form the input related reduction-closure of the set Ui�1ai. For eachstate node, v 2 Ui, labelled k say, in Ui, and for each item (A ::= x1 : : : xm�; ai+1)in k, �nd all the state nodes u, labelled l say, in the GSS which are on a path oflength 2m from v. Let g be the node reached from l along the transition labelledA in the DFA. If there is not already a state node in Ui labelled g then createsuch a node, w, and add it to Ui.��� ���kl A ���gu vw���ZZZ} : : :If there is already a path of length 2 from w to u then do nothing. Otherwisecreate a symbol node labelled A which is a successor of w and a predecessor ofu. We continue this process until all the reductions in all the nodes in Ui havebeen dealt with, i.e. until Ui is closed under input related-reductions.Applying this to our example, computing the input related reductions fromnodes labelled 2,6 and 9 adds new state nodes labelled 3,5, and 7 to U2.

The graph structured stack (GSS) 10��� a� � ���10 DT �� ������35QQQk SSSSSo b� � ���9bb�� �� ������26D � ���3TT �� ������75JJJJJ] AAAAAAAKM
The newly created node labelled 7 has a reduction which leads back to state 0and then to state 5. However, there is already a state node labelled 5 in U2which has a path of length 2 back to the state node in U0 labelled 0, so we don'tneed to add anything to the GSS. The set U2 is now closed under input relatedreductions, and step two is complete.Reading the �nal input symbol, b, yields the following GSS��� a� � ���10 DT �� ������35QQQk SSSSSo b� � ���9bb�� �� ������26D � ���3TT �� ������75JJJJJ] AAAAAAAKM b� � ���2bb�� �� ������86The only state which has a reduction on the lookahead symbol $ is state 6.Performing the input related reduction on this state gives the �nal GSS below,in which U0 = f0g, U1 = f1; 3; 5g, U2 = f2; 3; 5; 7; 9g and U3 = f2; 4; 6; 8g.��� a� � ���10 DT �� ������35QQQk SSSSSo b� � ���9bb�� �� ������26D � ���3TT �� ������75JJJJJ] AAAAAAAKM b� � ���2bb�� �� ������86S � ���4

M
In general, if at any step the set Ui is empty, i.e. there are no transitionslabelled ai from any state node in Ui�1, or if Un does not contain the accepting

The graph structured stack (GSS) 11node of the DFA, then the input string is not in the language and the processstops and reports failure. Otherwise the process stops when the construction ofUn is complete and reports success. In our running example, since U3 contains astate node labelled 4, the DFA accepting state, the input abb has been correctlyrecognised.2.3 Dealing with �-rulesFor general grammars it is possible for the start state of the DFA, and of courseother states, to contain reductions of the form (A ::= �; a). It is not di�cult toincorporate such reductions into the model described above.If a node v 2 Ui has label h, and h contains an item (A ::= �; ai+1) then we�nd the entry gk in row h, column A of the LR(1) table. We then check to seeif there is a node w 2 Ui with label k. If not, we create one. We then create anode u labelled A and make u a predecessor of v and a successor of w. The e�ectof this is to add paths between two nodes at the same level in the GSS. In somecases this will result in cycles in the graph, but this does not a�ect the parsingprocess.We illustrate this using the following example:S 0 ::= SS ::= aA j �A ::= S j � �
 �	�
 �	? - -S0 ::= �S; $S ::= �aA;$S ::= �; $S0 ::= S�; $ S ::= a �A; $A ::= �S; $ S ::= aA�; $A ::= S�; $S a A05 2 34�
 �	'& $% A ::= �; $S ::= �aA;$S ::= �; $'& $%XXXXzS�ainput: aWe begin in the start state, state 0, and construct a state node, v0, labelled 0 inthe GSS. There are no valid reductions in state 0 when the next input symbol isa, thus U0 = fv0g. We then read the a, create new nodes u1 and v2 labelled aand 2, respectively, and add v1 to U1.��� a� � ���20 v1v0There are two valid reductions in state 2, (A ::= �; $) and (S ::= �; $). Thesegenerate two new state nodes, v2 and v3, which are added to U1 together withthe paths of length 2 from them to v1.��� a� � ���20 v1v0 S ���4 v3A ���3 v2XXXy�����*�����

The graph structured stack (GSS) 12The reduction at v2 results in the creation of a new node, v4 labelled 1, in Ui.The valid reduction at v3 results in a path of length 2 from v1 to v2, but thispath already exists, so no further action is taken.��� a� � ���20 v1v0 S ���4 v3A ���3 v2S ���1 v4�AAAAAAAK XXXy�����*�����The construction of U1 is now complete, and it contains a node whose label isthe accept state of the DFA, so the input string is accepted.2.4 Further issues to be consideredAll of the algorithms that we shall discuss in this report are based on the processthat we have described in the previous sections: begin with the start state of theDFA and construct its input related reduction-closure U0. At step i with inputai form the set Ui�1ai of states which can be reached from a state in Ui�1 alonga transition labelled ai. Then construct the input related reduction-closure, Ui,of Ui�1ai.The issues which remain to be addressed are the explicit method by which theinput related reduction-closures are computed (how the reductions are identi�ed)and the nature and method of construction of the derivation trees for the giveninput string. It is useful to identify three aspects of the process� the GSS and its construction� the output derivation trees� the method of constructing the output from the GSSWe can measure the e�ciency of the overall parser in terms of the size of theGSS, the e�ciency of the GSS construction method, the size of the output treesand the e�ciency of the method by which these trees are constructed.We shall look at the speci�c GSS construction algorithms given by Tomita [Tom86]and Farshi [NF91], and then we shall then give our own algorithm which is basedon the insights gained by studying the underlying principles of Tomita's algo-rithm.

Tomita's algorithms 133 Tomita's algorithmsIn his 1986 paper [Tom86] Tomita actually gives �ve algorithms for generalised LRparsing. All of these algorithms essentially calculate the input related reduction-closure of the current set Ui�1ai of states as described above. We shall refer tothese algorithms as Algorithms 0, 1, 2, 3, and 4.Algorithm 0 is just an introduction to the basic ideas an applies only to LR(1)grammars. We shall not discuss this algorithm.Algorithm 1 contains most of the machinery needed for the recogniser role of theparser, but it is only applied to �-free grammars and there is no direct discussionof the tree building role of the parser. This is the algorithm that we shall focusmost of our attention on and the one we have been referring to as Tomita's �rststage algorithm.Algorithm 2 is an attempt to generalise Algorithm 1 so that it is applicable toall context free grammars, however the algorithm actually fails to terminate ongrammars which contain hidden left recursion.Algorithm 3 is a minor extension of Algorithm 2 which constructs a slightly moree�cient GSS. The main aim of this extension is to allow the construction of moree�ciently packed derivation trees.Algorithm 4 builds the same GSS by the same method as Algorithm 3 but italso has the mechanisms for building the output derivation trees in the form of apacked shared parse forest.In this report we shall discuss Algorithm 1 with the modi�cations given in Al-gorithm 3. We shall then discuss the applicability of this algorithm to grammarswhich contain �.3.1 Processing reductionsConsider a GSS whose associate input string is a1 : : : an. As we have alreadystated, each set, Ui, of level i state nodes in the GSS must be input relatedreduction-closed. This means that when a new state node v, labelled h say, isadded to Ui we need to construct a (possibly empty) set of pairs of the form(A;m), one for each item of the form (A ::= x1 : : : xm�; ai+1) in h. We then needto �nd all state nodes u in the GSS such that there is a path of length 2m fromv to u. Thus we need to explore all paths of length 2m from v. The problemis that we may add a new successor node from v at a later stage in the process,creating a new path of length 2m from v which was not there when the validreductions from v were originally dealt with. Since the set Ui must be inputrelated reduction-closed, the node v must be processed again to deal with thenew reduction. To illustrate this issue let us consider the following example.S0 ::= SS ::= aDaT ::= B j aD ::= aD

Tomita's algorithms 14S0 ::= �S; $S ::= �aDa; $�� ���
 �	S0 ::= S�; $?S S ::= a �Da; $D ::= �a; aD ::= �B;aB ::= �aD; a '& $%D ::= a�; aB ::= a �D;aD ::= �B; aD ::= �a; aB ::= �aD; aXXXXz -a a�
 �	S ::= aD � a; $ �
 �	D ::= B�; a���	 JJJĴ ����)D B B�
 �	S ::= aDa�; $?a �
 �	B ::= aD�; aZZZZZ~D)a0 12 3456 7�� � '& $%input: aaaaa$The following is the GSS which will be constructed when input aaaa has beenread and the set U3a = fv1; v2g has been built.��� a ���10 �� a a a��� ��� ���3 3 3� � �� � �D aD��� ������5 67� ��� B ���4�D a��� ���5 6� ��AAAAAKMO @@@I v1v2The node v1 has a valid reduction of length 1 which results in the creation of astate node, v3, labelled 7. The node v2 has no valid reductions, the nodes v1 andv2 have been dealt with, and the GSS has the form��� a ���10 �� a a a��� ��� ���3 3 3� � �� � �D aD��� ������5 67� ��� B ���4�D a��� ���5 6� ��AAAAAKMO @@@I v1v2D ���7� v3@@@IThe node v3 has a valid reduction of length 2 which results in the creation of anew state node v4 labelled 4. There is only one path of length 2 from v3 so thisnode has now been dealt with. There is also a valid reduction of length 1 in nodev4. There is already a state node in U4 labelled 7, v3, so no new node is created,the node v3 is re-used.

Tomita's algorithms 15��� a ���10 �� a a a��� ��� ���3 3 3� � �� � �D aD��� ������5 67� ��� B ���4�D a��� ���5 6� ��AAAAAKMO @@@I v1v2D ���7� v3@@@I B ���4�D v4���	i6If we don't re-process v3 then we will miss the valid reduction along the path oflength 2 from v3 to the node at level 2. In addition, when we then read the �nalinput we end up with the following GSS in which U5 = fu1g and the parser will(incorrectly) report that the input string is not derivable from the grammar.��� a ���10 �� a a a��� ��� ���3 3 3� � �� � �D aD��� ������5 67� ��� B ���4�D a��� ���5 6� ��AAAAAKMO @@@I v1v2D ���7� v3@@@I B ���4�D v4���	i6 a ���3�� u1
However, if we re-process the node v3 we will generate a new path from thenode v4. This in turn introduces a new valid reduction from v4 which results inthe construction of a new node, v5, labelled 5.��� a ���10 �� a a a��� ��� ���3 3 3� � �� � �D aD��� ������5 67� ��� B ���4�D a��� ���5 6� ��AAAAAK@@@I v1

v2D ���7� v3@@@I B ���4�D v4���	Y6
D ���5� v5BM]]K ���+Now when we read the �nal input symbol and form the input related reductionon u2 we get the following GSS

Tomita's algorithms 16��� a ���10 a a a��� ��� ���3 3 3� � �� � �D aD��� ������5 67� ��� B ���4�D a��� ���5 6� ��AAAAAK@@@I v1
v2D ���7� v3@@@I B ���4�D v4���	Y�

D ���5� v5BO]OK ���+ a ���3 u1
a ���6 u2S ���2 u3

�� ��
�� �

K
Then U5 = fu1; u2; u3g contains a node, u3, whose label is the accepting state ofthe DFA, so the input has been correctly recognised.3.2 Storing pending reductionsIf we need to visit a node again because a new path has been introduced we don'twish to search all paths again. Re-computing previously computed reductionswill not cause an error because ultimately the check for the pre-existence of apath of length 2 will prevent duplication of the reductions. (If this check werenot there then the process could fail to terminate!) However, graph searching isa relatively expensive operation and to repeat searches that have already beencarried out will make the parser very ine�cient. Tomita addresses this issue bykeeping a set of pending reductions which records both the reduction rule to beapplied and the �rst edge of the path(s) along which the reduction should betraced. When a state node is created in the GSS it has a label, h say, and asuccessor node, u, which is a symbol node.x ���h�� � � u vThe list of grammar rules is numbered and, for each item (A ::= x1 : : : xm�; ai+1)in h, where ai+1 is the next input symbol, the pair (rj; u) is added to the set ofpending reductions, where j is the number of the rule A ::= x1 : : : xm. When thepair (rj; u) is processed, all paths from u of length 2m � 1 are found. (This, ofcourse, is equivalent to �nding all paths of length 2m from v which include theedge (v; u).) If, at a later stage, a new path from v is created by adding a newedge whose source is v x ���h�� � � u vx� � � u0 �����then, for all reductions rj in h, the pairs (rj; u0) are added to the set of pendingreductions. This allows the new possibilities to be processed without reprocessing

Tomita's algorithms 17reductions along paths that have already been explored. In addition, Tomitamaintains a set Q of pairs (v; h) where v is a state node in Ui with label k andh is a DFA state such that there is a transition labelled ai+1 from k to h. Theset Q contains the `shift actions' which must be used to construct the set Uiai+1from the set Ui.3.3 Tomita's �rst stage algorithmWe are now in a position to give Tomita's Algorithm 1. The algorithm uses thefollowing sets for `book keeping' purposes:A: the set of state nodes in the GSS awaiting processingUi: the set of level i state nodes in the GSSR: the set of pending reductionsQ: the set of pending shiftsThere are three functions which build the GSS:ACTOR: Processes state nodes from the A, putting pending shifts and reductionsinto the sets R and Q.REDUCER: Processes pending reductions from the set R, creating new state andsymbol nodes in the GSS as necessary. This function constructs the input relatedreduction-closures of the set Uiai+1.SHIFTER: Processes the shifts from the set Q, constructing the state nodes inset Uiai+1.Algorithm 1input: an �-free context free grammar whose production rules are uniquely num-bered, a DFA constructed from this grammar in the form of a standard ac-tion/goto table, and an input string a1 : : : an$.create a state node v0 labelled with the start state 0 of the DFA.set U0 = fv0g, A = ;, R = ;, Q = ;for i = 0 to n do PARSE SYMBOL(i)PARSE SYMBOL(i) fA = UiUi+1 = ;while A 6= ; or R 6= ; doif A 6= ; do ACTOR(i) else do REDUCER(i)do SHIFTER(i)gACTOR(i) fremove v from A, and let h be the label of vif `shift k' is an action in position (h; ai+1) of the DFA table, add (v; k) to Qfor each entry `reduce j' in position (h; ai+1) of the DFA table ffor each successor node u of v add (u; j) to R ggREDUCER(i) f

Tomita's algorithms 18remove (u; j) from Rlet m be the length of the right hand side of rule j and let X bethe symbol on the left hand side of rule jfor each state node w which can bereached from u along a path of length (2m� 1) do flet k be the label of w and let gl be the entry inposition (k;X) of the DFA tableif there is no node in Ui labelled l then create a newstate node, v, in the GSS labelled l and add v to Ui and to Alet v be the node in Ui labelled lif there is a path of length 2 in the GSS from v to w then do nothingelse fcreate a new symbol node u0 in the GSS labelled Xmake u0 a successor of v and a predecessor of wif v is not in A ffor all reductions rk in position (l; ai+1) of the table add (u; k) to RgggSHIFTER(i) fwhile Q 6= ; do fremove an element (v; k) from Qif there is no node, w, labelled k in Ui+1 create oneif w does not have a successor node, u, labelled ai+1, create oneif u is not already a predecessor of v, make it one gglet q be the accepting state of the DFAif Un contains a state whose label is q report success else report failureNote: The action of the SHIFTER which results in the sharing of the symbolnode in the case where the shift results in the parser moving to the same state,is actually a modi�cation that Tomita introduces in his third stage algorithm,however we have included it here because it is only a minor extension and wehave included in our implementation of Algorithm 1e below.

Tomita's algorithm applied to general grammars 194 Tomita's algorithm applied to general grammarsThere is no operational aspect of Tomita's Algorithm 1 which prevents it frombeing applied to grammars which include �-productions. We can modify Algo-rithm 1 slightly to apply �-reductions once, when a node is processed for the �rsttime. The e�ect of this is that paths will be added between nodes in the sameUi in the case of nullable production rules. (Tomita's Algorithm 2 contains thismodi�cation along with other modi�cations which result in the splitting up of theUi into subsets. We shall briey discuss this later.) We shall call the algorithmAlgorithm 1e to indicate that it is admitting �-productions.In this section we shall give Algorithm 1e and show that it works on anexample grammar which contains hidden left recursion. We shall the considerthe problems with this algorithm and identify the grammar properties which cantrigger these problems.4.1 Algorithm 1eThe following is a slight modi�cation of Tomita's Algorithm 1 which allows inputgrammars to contain productions.input: a context free grammar whose production rules are uniquely numbered, aDFA constructed from this grammar in the form of a standard action/goto table,and an input string a1 : : : an$.create a state node v0 labelled with the start state 0 of the DFA.set U0 = fv0g, A = ;, R = ;, Q = ;for i = 0 to n do PARSE SYMBOL(i)PARSE SYMBOL(i) fA = UiUi+1 = ;while A 6= ; or R 6= ; doif A 6= ; do ACTOR(i) else do REDUCER(i)do SHIFTER(i)gACTOR(i) fremove v from A, and let h be the label of vif `shift k' is an action in position (h; ai+1) of the DFA table add (v; k) to Qfor each entry `reduce j' in position (h; ai+1) of the DFA tableif the length of j is 0 add (v; j) to Relse add (u; j) to R, for each successor node u of vgREDUCER(i) fremove (u; j) from Rlet m be the length of the right hand side of rule j and let X bethe symbol on the left hand side of rule j

Tomita's algorithm applied to general grammars 20if m = 0let k be the label of u and let gl be the entry in position (k;X)of the DFA tableif there is no node in Ui labelled l then create a new state node, v,in the GSS, labelled l and add v to Ui and to Alet v be the node in Ui labelled lif there is a path of length 2 in the GSS from v to u then do nothingelse fcreate a new symbol node u0 in the GSS labelled X and makeu0 a successor of v and a predecessor of uif v is not in A, for all reductions rk in position (l; aj+1)of the DFA table, with length6= 0, add (u0; k) to R gelsefor each state node w which can be reachedfrom u along a path of length 2m� 1 do flet k be the label of w and let gl be the entry in position (k;X) of the tableif there is no node in Ui labelled l then create a newstate node, v, in the GSS labelled l and add v to Ui and to Alet v be the node in Ui labelled lif there is a path of length 2 in the GSS from v to w then do nothingelse fcreate a new symbol node u0 in the GSS labelled Xmake u0 a successor of v and a predecessor of wif v is not in A ffor all reductions rk in position (l; ai+1) of the table add (u; k) to RgggSHIFTER(i) fwhile Q 6= ; do fremove an element (v; k) from Qif there is no node, w, labelled k in Ui+1 create oneif w does not have a successor node, u, labelled ai+1, create oneif u is not already a predecessor of v, make it one gglet q be the accepting state of the DFAif Un contains a state whose label is q report success else report failure4.2 An example with hidden left recursionWe illustrate Algorithm 1e by running it on the following grammar and inputstring aa (note the grammar contains hidden left recursion).S0 ::= SS ::= SSa j �

Tomita's algorithm applied to general grammars 21S ::= �SSa; a$ SS0 ::= �S; $S ::= �; a$'& $%S ::= S � Sa; a$S0 ::= S�; $S ::= �; a'& $%S ::= �SSa; a- S SS ::= S � Sa; a S ::= S � Sa; aS ::= SS � a; a$ S ::= SS � a; aS ::= �; a S ::= �; a'& $%'& $%S ::= �SSa; a S ::= �SSa; a- -�
 �	S ::= SSa�; a$0 5 4 23������) a �
 �	S ::= SSa�; a 1������) a$ a S0 r2 r2 g51 r12 r2/s1 g23 r1 r14 r2/s3 g25 acc r2 g4We begin in state 0 with just a node v0 labelled 0 in the graph structuredstack. So we have A = U0 = fv0g, R = Q = ; and the lookahead symbol isa1 = a. We remove v0 from A and note that the only action is to reduce usingthe rule S ::= �. Since the length of the rule is 0, this adds the pending reduction(v0; 2) to R. When we process this reduction we �nd that the goto node is state5. There is no node labelled 5 in U0 so we create one, v1, and add a path from itto v0 via a node labelled S. The node v1 is added to U0 and to A.���S5���066v0v1 A = fv1gWe then remove the node v1 from A, process the reduction S ::= �, create annew node, v2 labelled 4, and a path from v2 to v1. Processing v2 creates anothernew node, v3 labelled 2, and adds the pending shift (v2; 3) to the list Q.
���S2���466S
S������506666v0v1v2v3 A = fv3gQ = f(v2; 3)gR = ;Processing v3, there is already a node in U0 labelled 2, v3 itself. Thus we simplyadd a path from v3 to itself and add the pending shift (v3; 1) to Q. Since there

Tomita's algorithm applied to general grammars 22are no reductions in state 2 of length greater than zero, the addition of a newedge from node v3 does not create any new pending reductions. So we performthe pending shifts, creating new states v4 and v5 which are added to U1.
���S2���466S
S������506666v0v1v2v3S a ���1 v5JĴ SSo� �a ���3 v4� � A = fv4; v5gNow we add the nodes v4, v5 to A and remove and process v4. From state 3 wecan apply the reduction S ::= SSa which takes us back to v0 and hence the gotostate is 5. There is no node labelled 5 in U1 so one, v6, is created and addedto A. We then remove and process v5. There are three paths of length 6 fromv5, which take us to nodes v3, v2 and v1. The �rst two generate a new node v7,labelled 2, and paths of length 2 from v7 to v3 and v2, and the third generates anew node v8, labelled 4, and a path of length 2 from v8 to v1.
���S2���466S
S������506666v0v1v2v3S a ���1 v5JĴ SSo� �a ���3 v4� �SS ������45 v8v6�� �� ���2 v7SS XXXy���9HHHY���� A = fv6; v7; v8gWe remove and process node v6 which results in the creation of a path of length2 from v8 to v6. We then remove and process v7 which results in a new path oflength 2 from v7 to itself, and in a pending shift (v7; 1). Finally we remove andprocess v8 which results in a new path of length 2 from v7 to v8 and a pendingshift (v8; 3). Since state 2 contains only reductions of length 0, no new reductionsare created down the new edge, and the construction of U1 is complete. The

Tomita's algorithm applied to general grammars 23pending shifts are then processed, creating new nodes v9, v10 which are added toU2 and to A.
���S2���466S
S������506666v0v1v2v3S a ���1 v5JĴ SSo� �a ���3 v4� �SS ������45 v8v6�� �� S66 S���2 v7SS XXXy���9HHHY���� S���3JJJJ] PPPi a ���3 v10� �a ���1 v9� � A = fv9; v10gQQsRemoving v9 from A, there are no actions that can be applied. Processing v10results in the creation of a new node, v11, labelled 5 and a path of length 2 fromv11 to v0. The second path of length 6 from v10 also results in need for a nodelabelled 5, but there already is one, and a path of length 2 of the required type,so no further action is taken. There are no actions which can be applied fromstate 5 so the construction process stops.
���S2���466S
S������506666v0v1v2v3S a ���1 v5JĴ SSo� �a ���3 v4� �SS ������45 v8v6�� �� S66 S���2 v7SS XXXy���9HHHY���� S���3JJJJ] PPPi a ���3 v10� �a ���1 v9� �QQs

S ���5 v11�)
Since U2 contains a node, v11, whose label is the accepting state of the DFA, thealgorithm reports success and the string aa is accepted.4.3 The (in)correctness of Algorithm 1eTomita's Algorithm 1 and Algorithm 1e will always terminate, even given a gram-mar with hidden left recursion, because each Ui can only contain as many nodes

Tomita's algorithm applied to general grammars 24as there are states in the original DFA and there is at most one path of length 2from any node in any Ui to any node in any Uj .The problem is that it is possible for Algorithm 1e to reject strings whichare actually in the language in certain special cases. We shall now look at thesespecial cases.4.4 Hidden right recursionIn Tomita's Algorithm 1 and Algorithm 1e reductions are added to R with the�rst edge down which the reduction is to be applied. This prevents the algorithmfrom performing unnecessary work in re-tracing reductions down paths that ithas already explored. However, as a consequence it is necessary to ensure thatnew paths from an existing node in the GSS are only created by the addition ofa new edge from the �rst node in the path. We now illustrate this point.We say that a non-terminal, A, has hidden right recursion if it has a rule ofthe form A ::= �A�, where � +)�. A grammar has hidden right recursion if it hasa non-terminal with hidden right recursion.Consider the following example.S0 ::= SS ::= bAA ::= aAB j �B ::= �S ::= �bA; $ bS0 ::= �S; $ S ::= b �A; $A ::= �; $A ::= �aAB; $- a A B ::= �; $A ::= aA �B; $'& $%- -�
 �	S ::= bA�; $0 2 4 53 �
 �	A ::= aAB�; $ 6B�
 �	S0 ::= S�; $ '& $%A ::= a � AB;$A ::= �; $A ::= �aAB; $�� �� �� ��7a ����=HHHHjS 1 A�� �? $ a b A B S0 s2 g11 acc2 r3 s4 g33 r14 r3 s4 g55 r4 g66 r2We run Algorithm 1e with the above table and input string baa. There are noreductions on lookahead b or a so the construction of U0, U1 and U2 is straight-forward and generates the GSS��� b� � ���20 a� � ���4 v2v1v0 A = fv2gWe then process the pending shift from v2 on the second a, to create a new node,v3, labelled 4 which is added to U3 and then to A. This is the only node in A so

Tomita's algorithm applied to general grammars 25we remove and process it. The action r4 creates a new node, v4, labelled 5 whichis added to U3 and A, and a path of length 2 from v4 to v3. Again, v4 is the onlynode in A so we remove and process it. The action r4 creates a new node, v5,labelled 6 which is added to U3 and A, and a path of length 2 from v5 to v4.��� b� � ���20 a� � ���4 v2v1v0 A = fv5ga� � ���4 v3A���5 v466B���6 v566Now we remove and process v5. There is a reduction of length 3 which takes usback to the node v2 and then, from row 4 of the table, we see that we need toadd a path of length 2 from the node, v4, in U3 which has label 5 to the node v2.��� b� � ���20 a� � ���4 v2v1v0 A = ;a� � ���4 v3A���5 v466B���6 v566A HHHYQQQQkAlgorithm 1e now requires us to add any reductions, of length greater than 0,in position (5; $) of the table to the pending reduction set R. There are no suchreductions so R and A are empty and the algorithm terminates. Since thereis no node in U3 with label 1 (the accept state of the DFA) the string baa is(incorrectly) rejected.The problem is that a new path has also been created from node v5 andwe need to apply a reduction down this path. Tomita addresses this issue bysubdividing the sets Ui and creating a new subset every time a reduction isapplied. The e�ect of this is that when the �rst reduction from v5 is computeda new subset U3;1 is created. The existing node, v4 is not in this subset so a newnode, v6, labelled 5 is constructed.

Tomita's algorithm applied to general grammars 26��� b� � ���20 a� � ���4 v2v1v0 A = fv6ga� � ���4 v3A���5 v466B���6 v566AQQQQk ���5 v6XXXXXXXXyThen, when v6 is processed, the reduction is applied to construct a new nodelabelled 6, and then �nally the reduction from state 6 is applied.��� b� � ���20 a� � ���4 v2v1v0 a� � ���4 v3A���5 v466B���6 v566AQQQQk ���5 v6XXXXXXXXy B���6 v766
AS ���3 v8���1 v9���	

This approach, which is the basis of Tomita's Algorithm 2 although slightly sim-pli�ed in the above description, will result in the correct recognition of the stringbaa but the introduction of the subdivisions of the Ui causes the algorithm to failto terminate when given a grammar with hidden left recursion.Farshi addresses this issue by revisiting all the nodes in Ui and �nding all pathswhich contain the newly added edge and then applying all reductions down thesepaths. We shall formally describe this method in Section 5, but the methodis ine�cient in that it has to search for all paths containing a speci�ed edge.Thus, before describing Farshi's method we shall analyse the grammars on whichAlgorithm 1e fails. We shall use this information in Section 6 to give a di�erentsolution which involves modifying the LR(1) DFA so that Algorithm 1e workscorrectly on all grammars.4.5 Right nullable rulesIn the previous section we saw that Algorithm 1e incorrectly rejected a string asa result of failing to apply a reduction down a path which was created after thenode which generated the reduction was processed. This occurred because a newpath was created by adding a new edge from a node which was in the middle ofan existing path, i.e. from a node which already has at least one parent. In thissection we analyse the grammar properties which permit this situation to occur.

Tomita's algorithm applied to general grammars 27Suppose that we are at step i of the algorithm, so that the set Ui is beingconstructed. Suppose also that we have an existing path in the GSS whose �rstnode is t, and suppose that a new edge is created from a node, v say, in the pathto a node u. Since the node v is assumed to already exist, this path must havebeen created as the result of a reduction, A ::= � say.��� x ��� xm ���x1���� xq ����v� � � � � � � � �w tA���u ������9�� � � l h� �This new path will only create a problem if there is a node, w say, which hasalready been processed, which is not equal to v, and whose state, h say, containsa reduction, B ::= �� say, where twice the length of � is at least the length of thenew path from w to u. Also, since v 6= w, we may assume that m � 1.First we note that a new edge is only added from a state node in the GSSif that node belongs to the current Ui, i.e. if the node was created during thecurrent step of the algorithm. Thus v must be in Ui. All the nodes, s, for whichthere is a path from s to v must have been created after v and hence must alsobe in Ui. Thus we re-draw the above GSS fragment as follows:��� x ���x1���
xq���

v� � �
t

A���u ������9�� � � l xm���wh66666......It is not hard to show, by induction on the order on which the edges were created,that if a path of length 2 is created between any two nodes in the same Uj thenthis path must have been created as a result of a reduction of the form C ::= where �)�, see Lemma 3 below. Thus we may assume that for each of the xjwhich label symbol nodes on the path from t to v we have xi ::= i where i �)�.We say that a rule of the form A ::= �� where � +)� is right nullable and agrammar is right nullable if it contains a right nullable rule.In order for a reduction to fail to be applied it is necessary both for an edgeto be added part of the way down an existing path and for the reduction whichadds this edge to be processed before the reduction which is to be applied downthe new path. In other words, our addition of �-handling capability to Tomita's�rst algorithm makes that algorithm sensitive to the order in which reductions

Tomita's algorithm applied to general grammars 28are processed. Consider the following example,S0 ::= SS ::= BDab j aDadD ::= aABA ::= aBB j �B ::= �
�
 �	S0 ::= �S; $S ::= �BDab; $S ::= �aDad; $S0 ::= S�; $ S ::= aD � ad; $S B013 3�
 �	 S ::= a �Dad; $D ::= �aAB; a �
 �	S ::= aDa � d; $2B ::= �; a 15a �� ���� �?'& $%-XXXz - �
 �	S ::= aDad�; $1-
�
 �	S ::= BD � ab; $11S ::= B �Dab; $D ::= �aAB;a �
 �	S ::= BDa � b; $1014 a�� �� - �
 �	S ::= BDab�; $9b-D ::= a �AB; $D ::= �aAB; a12'& $%A ::= �; $ D ::= aA �B; $B ::= �; $ 7�� ��A ::= a �BB; $B ::= �; $ 8�� �� A ::= aB � B; $B ::= �; $ 5�� ���
 �	A ::= aBB�; $4�
 �	D ::= aAB�; $6

� ���> -D aaa a BBa Bd@@@R@@@R HHHjA QQQQs@@@R���>$ a b d A B D S0 s15/r6 g14 g131 r22 s13 s24 r45 r6 g46 r37 r6 g68 r6 g59 r110 s911 s1012 s8/r5 g713 acc14 s12 g1115 s12 g3We construct the GSS for the input string aaab. The GSS constructed at thepoint where the second a is shifted is

Tomita's algorithm applied to general grammars 29ma ��m14B m7Am0 ma �� m6B ma ��
m11D ma �� ma ��
15 12812 106 wvx ��>���:CCCCCCCO � XXyHHY6

If we process the node w �rst, and then the nodes which are created from thiswe get ma ��m14B m7Am0 ma ��
m6B ma ��
m11D ma �� ma ��
15 12812 10

66 wv m7m666BACCO AAAK ux ymD� 3������>JJ]���:XXXyZZZZ}CCCCCCCOIf we then process the node v and the subsequently created nodes we getma ��m14B m7Am0 ma ��
m6B ma ��
m11D ma �� ma ��
15 12812 10

66 wv m7m666BACCO AAAK ux m5B m4B A QQQk������) ymD� 3������>JJ] ZZ}��*HHY������:XXXyZZZZ}CCCCCCCO

Tomita's algorithm applied to general grammars 30The subsequent reduction down a path of length 6 from node u to node x is notdetected. This results in the ultimate failure of the parse.If we had processed node v before node w, and the node w before the nodey, then at the completion of the construction of U2, i.e. just before the third awas shifted, we would have ma ��m14B m7Am0 ma ��
m6B ma ��
m11D ma �� ma ��
15 12812 10

66 wv m7m666BA
D m11

CCO AAAK ux m5B m4B A QQQk������)
�

ymD� 3������>JJ] ZZ}��*HHY������:XXXyZZZZ}CCCCCCCO6We can then successfully complete the parse, generating the GSSma ��m14B m7Am0 ma ��
m6B
ma ��

m11D ma �� ma ��
15 12812 10

66 m7m666BA
D m11

CCO AAAKm5B m4B A QQQk������)
�

ma �� 8
ma �� 10 mb �� 9
mS � 13mD� 3 ma �� 2���)� ���1PPPi���* ���1HHHY���1QQQQk6 HHHY HHHYCCCCCCCOThus in this case we can avoid the problem of generating new paths down whicha previously processed reduction must be applied by choosing the order in whichnodes are processed carefully. (Note that this processing order will also result ina successful parse of the string aaad, although if y were to be processed before w

Tomita's algorithm applied to general grammars 31then this would not be the case.) However, it is not always the case that we cando this.The most likely source of problems which cannot be avoided by processingreductions in an appropriate order are those cases when the additional edge iscreated as a result of applying a reduction down the path to which the new edgewill be added. In other words, when a reduction is applied from the node t downto the node u and the new path is added from a node, v, between t and u, to u.��� x ���x1��� xq���v� � � tA���u ������9� � � l 666...PPPPiIn this case it is not possible to construct the path t; : : : ; v; u before the node t isprocessed because the path from v to u is only created after t is processed. Weshall now show that the only way that a new edge can be added to the middleof an existing path as a result of applying a reduction down that path is whenthe grammar contains hidden right recursion. Thus, in this sense, it is hiddenright recursion which ultimately breaks Tomita's Algorithm 1 when it is appliedto general context free grammars.First we note that, by construction of the GSS, for the path from v to u tobe created as a result of a reduction from t, t must contain an item of the form(A ::= : : :xx1 : : : xq�; ai+1) and, as we saw above, xl �)�, for 1 � l � q.It is not hard to see that if there is a path v1, v2, v3 in the GSS where v1 haslabel h1, v3 has label h2 and v2 has label z then there is a transition from h2 toh1 labelled z in the DFA.��� z� � ���h1h2 v3 v2 v1GSS ��� ���h2 h1DFA -zSince all successor nodes of a given state node in the GSS must have the samelabel, we must have x = A in the GSS path that we are considering. So A ::=: : :Ax1 : : : xq, where x1 : : : xq �)�, and hence A has hidden right recursion.In Section 6 we give an algorithm based on an extension of the underlyingDFA table in which right nullable rules are treated as reductions. We shall showthat this algorithm generates correct parsers for all context free grammars.4.6 Merging symbol nodesWe complete our discussion of Tomita's algorithms by considering one furthermodi�cation that he makes.We have seen that we can reduce the number of symbol nodes in the GSS bysharing nodes labelled with a terminal,

Tomita's algorithm applied to general grammars 32m ma ��m a�m a� ���+ QQQk becomes m ma ��mm QQQk ���+Of course, in order to simply recognise whether or not a string is in the languagewe do not need to include the symbol nodes in the GSS at all. However, Tomitaextends his algorithms so that they produce derivation trees and he constructsthe GSS so that the symbol nodes in the GSS correspond exactly to nodes in thederivation trees. With this constraint in mind we consider under what circum-stances non-terminal symbol nodes can be merged.Two symbol nodes in the GSS can correspond to the same node in the deriva-tion tree if they have the same symbol and if they generate the same portion ofthe input string. If a symbol node labelled A has parent node v 2 Ui and childnode u 2 Uj then it generates the portion aj+1 : : :ai of the input a1 : : : am. Thusto be candidates for merger two symbol nodes must have parent nodes in thesame Ui and child nodes in the same Uj .We must remember that the role of the GSS is to record paths taken throughthe DFA, and merging two symbol nodes which have di�erent parents and di�er-ent children could create spurious paths in the GSS. For example, merging thefollowing two nodes will create a path from v to w which does not really exist.m mA��m A� m�whk lp v m mm A mwhk lp v��)HHY���)HHHYWe can avoid this by requiring that nodes are only shared if they have the sameparent.We have to check, when adding a new symbol node, whether there alreadyexists a path of length 2 from the required state in Ui to some state in Uj , butthis check is not much more e�ort than the check for the existence of a path oflength 2 from the required state in Ui to the base state, which is already carriedout. The problem is that, as for the case with right nullable rules, if we allowthe reuse of symbol nodes in this way it is possible to add a new edge from thesecond node of an existing path, and hence to fail to perform reductions downthe new path which is created.Tomita addresses this issue by only allowing sharing of symbol nodes at thetime that the node is created. This means that symbol nodes can only be sharedif the derivation paths which created them co-incide down to the penultimatenode. m m��mm QQQk ���+ m�� mA��y}MThis has the advantage of not requiring any checking to see whether paths alreadyexist, but it severely constrains the number of symbol nodes that can be shared.

Tomita's algorithm applied to general grammars 33In our algorithm, see Section 6, we shall record pending reductions with thesecond state node down the path which they are to be applied, rather than withthe �rst edge as Tomita does. This will allow us to share all symbol nodes withthe same parent, and children in the same Uj , because reductions will be recordedwith the newly added child rather than with the existing incoming edge. Beforethis we look at Farshi's method for identifying and storing pending reductions.

Farshi's algorithm 345 Farshi's algorithmIn this section we discuss Farshi's modi�cation to Tomita's algorithm [NF91],which he designed to address the problem with hidden left recursion that Tomita'sAlgorithm 2 displayed. We quote the algorithm here verbatim from Farshi's paperbecause we wish to comment on its e�ciency, particularly in light of the commentmade on page 74 of [NF91] which states: \However, the new algorithm worksexactly like the original one in case of grammars that have no �-productions.This algorithm has no extra costs beyond that of the original algorithm."5.1 Farshi's recognition algorithm for general grammarsinput: a context free grammar G whose production rules are uniquely numbered,a DFA with start state s0, constructed from this grammar, in the form of astandard action/goto table, and an input string a1 : : : an$.PARSE(G; a1 : : : an)� := ;an+1 := $r := FALSEcreate a vertex v0 labelled s0U0 := fv0gfor i := 0 to n do PARSEWORD(i)return rPARSEWORD(i)A := UiR := ;; Q := ;repeatif A 6= ; then do ACTOR else if R 6= ; then do COMPLETERuntil R = ; and A = ;do SHIFTERACTORRemove an element v from AFor all � 2ACTION(STATE(v), ai+1) dobeginif � = `accept' then r :=TRUEif � = `shifts' then add (v; s) to Qif � = reducep thenfor all vertices w such that there exists a directedwalk of length 2jRHS(p)j from v to w=� For �-rules this is a trivial walk, i.e. w = v �=do add (w; p) to RendCOMPLETERRemove an element (w; p) from R

Farshi's algorithm 35N := LHS(p); s :=GOTO(STATE(w), N)if there exists u 2 Ui such that STATE(u)= s thenbeginif there does not exist a path of length 2 from u to w thenbegincreate a vertex z labelled N in �create two arcs in � from u to z and from z to wfor all v 2 (UinA) do=� In the case of non-�-grammars this loop executes for v = u only �=for all q such that `reduceq' 2ACTION(STATE(v),ai+1) dofor all vertices t such that there exists a directed walk oflength 2jRHS(q)j from v to t that goes through vertex zdo add (t; q) to Rendendelse =� i.e. when there does not exist u 2 Ui such that STATE(u)= s �=begincreate in � two vertices u and z labelled s and N respectivelycreate two arcs in � from u to z and from z to wadd u to both A and UiendSHIFTERUi+1 := ;repeatremove an element (v; s) from Qcreate a vertex x labelled ai+1 in �create an arc from x to vif there exists a vertex u 2 Ui+1 such that STATE(u)= s thencreate an arc from u to xelsebegincreate a vertex u labelled s and an arc from u to x in �add u to Ui+1enduntil Q = ;5.2 The e�ciency of Farshi's algorithmIn this section we shall compare Farshi's algorithm with Tomita's algorithms.While we believe it is the case that Farshi's algorithm constructs the same GSSas Tomita's original algorithm for �-free grammars, we do not believe that thealgorithm as stated has `no extra costs beyond that of the original algorithm'. Inaddition, Farshi's algorithm does not adopt the symbol node merging introducedin Tomita's Algorithm 3. We now discuss these issues with respect to the methodFarshi uses for storing pending reductions.

Farshi's algorithm 36Recall that in Tomita's algorithms pending reductions are stored with the �rstsymbol node on the path down which they are to be applied. Thus, if a new pathis created by adding an edge in the middle of an existing path, Tomita's methoddoes not provide a mechanism for storing pending reductions down the new pathwithout also re-exploring the other paths that begin with the same node. Inorder to overcome this, Farshi's algorithm stores reductions together with thenodes at the ends of the paths down which the reductions can be applied. Thisis essentially equivalent to Tomita's method, it is just that the path tracing iscarried out a di�erent point in the algorithm. (Although it is possible that withFarshi's method the set R of pending reductions will tend to be larger.)It is trivial to modify Farshi's algorithm so that symbol nodes correspondingto terminals are merged where possible, and we have done this in the versionthat we have implemented, see Section 5.3. However, as reductions are storedwith the �nal node in the path it is not possible easily to tell when two di�erentreduction,node pairs share the same path up to the penultimate node. Thus thesecond type of symbol node merging employed in Tomita's Algorithm 3 is notused either in Farshi's algorithm or in our implementation of it.The main issue with Farshi's algorithm is the additional e�ort introduced bythe need to search for all paths containing a given node, z, when storing pendingreductions. (This is the search carried out as part of the inner loop on line 12of the COMPLETER function above.) As actually stated in the algorithm, it isnecessary to search for all nodes on the current frontier, Ui, which are not awaitingprocessing, and then, for all reductions associated with these nodes, �nd all pathsof the appropriate length which include z. This proposal essentially defeats theobject of Tomita's original decision to store reductions with the �rst node on theappropriate path. If we just stored the reductions alone, and re-stored them eachtime an edge is added to the GSS, then the only additional cost over Farshi'smethod would be a check for the existence of path of length 2 in the case wherethe reduction had already been applied. (This check would con�rm the existenceof the path and no further work would be done.)There is a comment in Farshi's algorithm a few lines above the searching loopwhich states that for non-� grammars the `for' loop only executes for v = u. Itis true that this is the only case in which additional elements are added to R,but with the algorithm as stated, in all cases the searching will be carried outfor all nodes in Ui not awaiting processing. We assume that Farshi intends theimplementor to put in a check for non-� grammars before the comment and toimplement a di�erent action in this case.If the GSS is implemented so that searching back up paths is as e�cient assearching down them, i.e. if the predecessors of a node can be found e�ciently,then, with a somewhat more careful description of the search process, we canmodify Farshi's algorithm so that it has essentially no additional costs over Al-gorithm 1e on grammars with no right nullable rules, and so that the searchingcosts for general grammars are reduced. Of course, implementing directed graphsso that predecessors can be found as e�ciently as successors does increase thespace required by the implementation. We assume that this is the reason thatFarshi's algorithm does not adopt this approach. However, with modern memoryavailability we feel that the space cost is worth trading for increased speed of

Farshi's algorithm 37the algorithm. Thus we present our modi�ed version of Farshi's algorithm inSection 5.3, and this version is the basis of the implementation that we have usedin our practical comparison of the various algorithms, see Section 7. In Section 6we shall present an algorithm in which pending reductions are stored with the�rst node on the new part of the path down which they are to be applied, thusavoiding any additional searching over that required in Tomita's Algorithm 1.5.3 A modi�ed version of Farshi's algorithmIn this section we give a modi�ed version of Farshi's algorithm in which thecosts involved with searching for paths containing a speci�ed node are reduced(provided that the GSS implementation allows predecessor nodes to be e�cientlyfound), and in which symbol nodes corresponding to terminals are merged incertain cases. The only changes are in the SHIFTER and the COMPLETER.input: a context free grammar G whose production rules are uniquely numbered,a DFA with start state s0, constructed from this grammar, in the form of astandard action/goto table, and an input string a1 : : : an$.PARSE(G; a1 : : : an)� := ;an+1 := $r := FALSEcreate a vertex v0 labelled s0U0 := fv0gfor i := 0 to n do PARSEWORD(i)return rPARSEWORD(i)A := UiR := ;; Q := ;repeatif A 6= ; then do ACTOR else if R 6= ; then do COMPLETERuntil R = ; and A = ;do SHIFTERACTORRemove an element v from AFor all � 2ACTION(STATE(v), ai+1) dobeginif � = `accept' then r :=TRUEif � = `shifts' then add (v; s) to Qif � = reducep thenfor all vertices w such that there exists a directedwalk of length 2jRHS(p)j from v to w=� For �-rules this is a trivial walk, i.e. w = v �=do add (w; p) to Rend

Farshi's algorithm 38COMPLETERRemove an element (w; p) from RN := LHS(p); s :=GOTO(STATE(w), N)if there exists u 2 Ui such that STATE(u)= s thenbeginif there does not exist a path of length 2 from u to w thenbegincreate a vertex z labelled N in �create two arcs in � from u to z and from z to wfor each odd integer d and vertex v 62 A which is a predecessor of zalong a path of length d dofor all q such that `reduceq' 2ACTION(STATE(v),ai+1) dofor all vertices t such that there exists a directed walk oflength 2jRHS(q)j� d from v to t that goes through vertex zdo add (t; q) to Rendendelse =� i.e. when there does not exist u 2 Ui such that STATE(u)= s �=begincreate in � two vertices u and z labelled s and N respectivelycreate two arcs in � from u to z and from z to wadd u to both A and UiendSHIFTERUi+1 := ;repeatremove an element (v; s) from Qif there exists a vertex u 2 Ui+1 such that STATE(u)=s thencreate an arc from x to v where x is the child, labelled ai+1, of uelsebegincreate a vertex u labelled s and an arc from u to x in �add u to Ui+1enduntil Q = ;

GLR parsing with a modi�ed DFA 396 GLR parsing with a modi�ed DFAIn this section we describe a general parsing algorithm which we prove is cor-rect on all context free grammars and input strings. The algorithm is based onTomita's Algorithm 1, incorporating the minor additions given in Algorithm 1eabove, but reductions whose �nal symbols are nullable are applied when the lastnon-nullable symbol is seen. I.e. if we have a production rule A ::= �BC whereB �)� and C �)� we treat the item (A ::= � �BC; b) as though it were a reduction.6.1 The reduction modi�ed DFA and an exampleWe construct the LR(1) DFA for a grammar in the normal fashion. However, inthe corresponding table we store the reductions slightly di�erently. As usual, ifthere is a transition from state h to state k labelled x then we store sk or gk inposition (h; x) of the table. If h contains an item of the form (A ::= x1 : : :xm �B1 : : :Bt; b), where t = 0 or Bp �)� for all 1 � p � t and A ::= x1 : : : xmB1 : : :Btis production rule number j, then we store the action (rj;m) in position (h; a) ofthe table.We illustrate this using the following example from Section 4.4S0 ::= SS ::= bAA ::= aAB j �B ::= �$ a b A B S0 s2 g11 acc2 (r3,0)/(r1,1) s4 g33 (r1,2)4 (r3,0)/(r2,1) s4 g55 (r4,0)/(r2,2) g66 (r2,3)We describe the construction of the GSS from this table with input string baa.We begin with the base node, v0, labelled 0. The action in position (0; b) iss2 so we create a new state node, v1, labelled 2 and a new symbol node labelledb. ��� b� � ���20 v0 v1We then read the next two input symbols, aa, and create new symbol nodes v2and v3 in a similar fashion.��� b� � ���20 v0 v1 a a� �� ���� ���4 4v2 v3When the node v3 is created the entry (r3; 0) in position (4; $) results in theconstruction of a new node, v4, and (r2; 1) adds another path from v4.

GLR parsing with a modi�ed DFA 40��� b� � ���20 v0 v1 a a� �� ���� ���4 4v2 v3���5 v4AA 66QQQQkQQQkThe reduction (r4; 0) results in a new node v5. The reduction (r2; 2) does notneed to be applied down the path from v4 through v3 because this action wasalready taken when the reduction (r2; 1) was applied. (If we do apply (r2; 2)down this path we will simply �nd that the path of length 2 from v4 to v2 alreadyexists.) Thus the reduction (r2; 2) is just applied down the path through v2,resulting in a new node v6.��� b� � ���20 v0 v1 a a� �� ���� ���4 4v2 v3���5 v4AA 66QQQQkQQQk ���6 v5B66���3 v6A QQQQk@@@@@@@@@@@@IIn the same way, the reduction (r2; 3) in position (6; $) does not need to beapplied down the path from v5 through v4. The reduction (r1; 2) is applied fromnode v6 to generate node v7, and the construction is complete.��� b� � ���20 v0 v1 a a� �� ���� ���4 4v2 v3���5 v4AA 66QQQQkQQQk ���6 v5B66���1 v7S QQQQk@@@@@@@@@@@@I ���3 v6A QQQQkQQQQQQQQQQQQQQQQQQQ
QQk

Since v7 is the accept state of the DFA, the string is accepted.

GLR parsing with a modi�ed DFA 416.2 Generalised reduction modi�ed LR parser (GRMLR)input: reduction-modi�ed DFA, input string a1 : : :an$PARSER fcreate a state node v0 labelled with the start state 0 of the DFA.set U0 = fv0g, R = ;, Q = ;, an+1 = $, U1 = ;, ..., Un = ;if sk 2table(0; a1) add (v0; k) to Qfor all (rj; 0) 2table(0; a1) add (v0; X; 0) to R, where X is the LHS of jfor i = 0 to n while Ui 6= ; do fA = Uiwhile R 6= ; do REDUCER(i)do SHIFTER(i)gif the DFA accepting state is in Un report success else report failuregREDUCER(i) fremove (v;X;m) from R�nd the set � of state nodes which can be reached from v along a path oflength 2(m� 1), or length 0 if m = 0for each state node u 2 � do flet k be the label of u and let gl be the entry in table(k;X)if there is a node w 2 Ui with label l fif there is not a path of length 2 from w to u fif there is a path of length 2 from w to a node in Ujmake the symbol node in the middle of this path a predecessor of uelse create a symbol node labelled X which is a successor of wand a predecessor of uif m 6= 0 f for all (rj; t) in table(l; ai+1) where t 6= 0and B is the LHS of j, add (u;B; t) to R ggelse fcreate a new state node, w, in the GSS labelled l and a new symbolnode, y, labelled Xmake y a successor of w and a predecessor of uadd w to Uiif sh 2table(l; ai+1) add (w; h) to Qfor all reductions (rj; 0) in table(l; ai+1) add (w;B; 0) to R whereB is the LHS of jif m 6= 0 f for all (rj; t) in table(l; ai+1) where t 6= 0and B is the LHS of j, add (u;B; t) to R ggggSHIFTER(i) fif i 6= n f

GLR parsing with a modi�ed DFA 42Q0 = ; (a temporary set to hold new shifts)while Q 6= ; do fremove an element (v; k) from Qif there is w 2 Ui+1 with label k flet u be the symbol node which is the successor of wmake u a predecessor of vfor all (rj; t) in table(k; ai+2) where t 6= 0 add(v; B; t) to R, where B is the LHS of jgelse fcreate a new state node, w, in the GSS labelled l and a new symbolnode, u, labelled ai+1make u a successor of w and a predecessor of vadd w to Uiif sh 2table(k; ai+2) add (w; h) to Q0for all (rj; t) in table(k; ai+2) where t 6= 0add (v; B; t) to R, where B is the LHS of jfor all (rj; 0) in table(k; ai+2) add(w;B; 0) to R, where B is the LHS of jggcopy Q0 into Qgg Our algorithm is in the same style as Tomita's Algorithm 1 except we do nothave a separate ACTOR which processes nodes in the GSS. In our algorithm,when a node v is created, any shift which is possible on the next input symbol isimmediately recorded in the set Q, for execution once the input related reduction-closure has been completed.Reductions of length m from v must be applied down all paths from v oflength 2m. If m = 0 there can only ever be one such path, the empty path. Ifm � 1 then new paths of length 2m from v are created every time a new successornode is added to v. Thus when a node is created all reductions of length 0 arerecorded in R. If the node has been created as the result of the application ofa reduction of length 0 (a reduction corresponding to a rule B ::= ��) then anyreductions of length greater than 0 will already have been applied from a previousnode (this is the role of the new reduction items (A ::= � �B; b) etc in the DFAtable) so no reductions of length greater than 0 are recorded.If the node has been constructed via a reduction of length greater than 0 thenwe record in R all reductions of length greater than 0, together with the secondnode along the path from v, for subsequent execution.If a new path from an existing node v is created then this must be as a resultof applying a reduction. If this reduction is of length 0 then any reductions downthe new path will have already been recorded. If the reduction is of length greaterthan 0 then the reductions of length greater than 0 in v and this new path mustbe recorded in R for subsequent execution. (The reductions of length 0 are not

GLR parsing with a modi�ed DFA 43recorded in this case because adding a new edge from v does not create a newpath of length 0).In order to generate more e�cient derivation trees, we have also writtenREDUCER(i) so that in the case where we have two paths of length 2 fromthe same node in Ui to di�erent nodes in Uj then the �rst half of these two pathsare merged. This results, in certain cases, in fewer symbol nodes in our GSSthan in the corresponding GSS produced with Algorithm 1e. Of course, there isalso an additional cost in that paths of length 2 from a given node have to besearched to check whether their end nodes lie in the appropriate Uj . In order toproperly compare our algorithm with Algorithm 1e, we have also implementedanother version of our REDUCER(i) which does not merge non-terminal symbolnodes in this way. This version is given in Section 6.3.6.3 The e�ciency of the algorithmOn �rst inspection we might expect our new algorithm to be less e�cient thanTomita's because, in general, there will be signi�cantly more conicts in theunderlying parse table. This could lead to more possibilities which need to beinvestigated and hence to a larger GSS. However, we claim that the GSS con-structed using our method is identical to that constructed using Algorithm 1e inthe cases where the latter algorithm works correctly.Although, for right nullable grammars, there are more conicts in the reduc-tion modi�ed table, these conicts result only from moving the point at which areduction is applied. These reductions would have been applied in the originalcase after some `shifting' of �-matching non-terminals on to the stack, and with-out consuming any further input symbols. Thus these conicts do not cause anyadditional reductions to be applied over and above what would have eventuallybeen done anyway. This point is illustrated further when we discuss the relation-ship between reduction modi�ed tables and LR(1) grammars in Section 6.5, andis essentially a consequence of our proof of the correctness of our algorithm givenin Section 6.4 below.Furthermore, the GSS construction process is more e�cient in our case inthe sense that the amount of graph traversal needed to construct the GSS is lesswhen the grammar contains right nullable rules. This is because reductions viarules of the form A ::= �� where � �)� are applied down paths of length j�j ratherthan paths of length j��j.In Section 7 we shall give examples from real grammars such as a C grammarand compare the e�ects of our algorithm with Algorithm 1e. In order to comparelike with like, we shall use a slightly di�erent version of our algorithm in which,as in Algorithm 1e, the symbol nodes corresponding to non-terminals are notmerged.REDUCER(i) fremove (v;X;m) from R�nd the set � of state nodes which can be reached from v along a path oflength 2mfor each state node u 2 � do f

GLR parsing with a modi�ed DFA 44let k be the label of u and let gl be the entry in table(k;X)if there is a node w 2 Ui with label l fif there is not a path of length 2 from w to u fcreate a symbol node labelled X which is a successor of wand a predecessor of uif m 6= 0 f for all (rj; t) in table(l; ai+1) where t 6= 0and B is the LHS of j, add (u;B; t) to R ggelse fcreate a new state node, w, in the GSS labelled l and a new symbolnode, y, labelled Xmake y a successor of w and a predecessor of uadd w to Uiif sh 2table(l; ai+1) add (w; h) to Qfor all reductions (rj; 0) in table(l; ai+1) add (w;B; 0) to R whereB is the LHS of jif m 6= 0 f for all (rj; t) in table(l; ai+1) where t 6= 0and B is the LHS of j, add (u;B; t) to R gggg The experiments demonstrate that the GSS constructed by our algorithmwith the above version of REDUCER(i) is the same size as that constructed byTomita's algorithm and that the graph searching required to construct the GSSin this case is less than is required for Algorithm 1e, for right nullable grammars.6.4 Correctness of the algorithmA language recognition algorithm is correct for a given context free grammar if,given any input string, the algorithm terminates and reports success if the inputstring is in the language generated by the grammar, and terminates and reportsfailure otherwise.Our proof of the correctness of our algorithm depends on the correctness of thestandard stack and table based parsing technique. We shall give a formal de�ni-tion of what we mean by the language accepted by a (possibly non-deterministic)table based parser, and we shall prove that, for all context free languages, ouralgorithm (deterministically) accepts exactly the language accepted by the tablebased parser.We begin with a general de�nition of a parse table. We then de�ne theoperation of a stack based machine with such a table on a given input string, andthen we de�ne the language accepted by this machine. These de�nitions are justextensions of the standard de�nitions for LR(1) tables to include tables whichmay have conicts and reductions applied on partially recognised handles.

GLR parsing with a modi�ed DFA 456.4.1 RM-Parse tablesA parse table, for a grammar � whose rules are uniquely numbered, is a tablewhose rows are labelled with a strictly increasing �nite sequence of integers start-ing from 0, and whose columns are labelled with the terminals and non-terminalsof the grammar together with the special end of �le symbol $. The entries in thetable are sets of actions. These actions are of the form sk, gk, (rj;m), and acc,where k is a row number, j is the number of a grammar rule and m is an integerwhich lies between 0 and the length of the right hand side of j. Entries in columnslabelled with non-terminals can contain at most one element, which must be ofthe form gk. Entries in columns labelled with terminals or $ can contain up toone action of the form sk and arbitrarily many actions of the form (rj;m). Inthe column labelled $ the entries can also contain the action acc.We call the parse table constructed from a grammar � using LR(1)-items inthe standard way the LR(1)-table for �. For non-LR(1) grammars the LR(1)-table will contain some entries with more than one action (usually referred to asconicts). In the LR(1) parse table all actions of the form (rj;m) will have mequal to the length of the right hand side of j, so these are usually written justas rj.As described in Section 6.1, we de�ne the reduction modi�ed LR(1)-table (orthe RM-table) to be the table obtained by taking the LR(1) table and addingextra actions of the form (rj; k) to the entry in position (h; a) of the table if theDFA state h contains an LR(1)-item of the form (A ::= � � �; a), where � �)�, �has length k, and A ::= �� is rule number j in the grammar.6.4.2 Table based parsersWe now de�ne a (non-deterministic) machine which takes a parse table and aninput string and traverses the table according to the actions in the table entries.This is just a straightforward extension of the standard LR(1) stack based parserto include tables with multiple entries and reductions of length less than thelength of the right hand side of the reduction rule.We de�ne a table based parser to be a stack based machine with an associatedparse table which takes as input a string of symbols. Initially the stack containsthe label, 0, of the �rst row of the table.At any step in an execution of the parser the stack will contain an alternatingsequence of row labels and column labels from the table, with 0 at the bottomand row label at the top. An execution step consists of looking at the currentsymbol, a say, in the input string and the integer, h say, on the top of the stack,(non-deterministically) selecting an action from the set in position (h; a) of thetable, and carrying this action out.If there are no actions in the set then the parser terminates and reports afailure. If the action is acc then the parser terminates and reports acc. If theaction is sk then the parser pushes a and then k on to the stack and advancesthe input pointer. If the action is (rj;m), where A is the symbol on the lefthand side of rule j, then the parser pops 2m symbols o� the stack, reads the newtop-of-stack symbol, l say, and then reads the entry in position (l; A) of the table.

GLR parsing with a modi�ed DFA 46If there is no action in this entry then the parser terminates and reports failure.If the action is gk then then parser pushes A and then k on to the stack.An execution path of a table based parser for a given input string is a sequenceof execution steps which start with 0 on the stack and the input pointer at thebeginning of the string. A string u is accepted by a table based parser if, on inputu$, there is some execution path of the parser which results in the action acc.An LR(1)-parser for a grammar � is a table based parser whose associatedtable is the LR(1)-table for �. An RM-parser for � is a table based parser whoseassociated table is the RM-table for �. We shall now show that the LR(1)- andRM-parsers for a given context free grammar are equivalent in the sense thatthey accept the same set of strings.6.4.3 Equivalence of LR(1)- and RM-parsersIn order to prove that the LR(1)- and RM-parsers accept the same set of strings inthe case where the associated tables have been generated from the same grammar,we need the following lemma, which addresses the behaviour of the LR(1)-parseron right nullable rules.Lemma 1 Suppose that there is a execution path of an LR(1)-parser which re-sults in a stack of the form 0; x1; h1; x2; h2; : : :xq; hq and the input pointer pointingat symbol a. Suppose also that the state hq contains an LR(1)-item of the form(A ::= � � �; a), where � �)�. Then there are continuations of the execution path1. in which the input pointer is not moved and the stack takes the form0; x1; h1; : : : ; xq; hq; y1; k1; : : : ; yp; kpwhere � = y1 : : : yp, and2. in which the input pointer is not moved and the stack takes the form0; x1; h1; : : : ; xi; hi; A; hwhere j�j = (q � i) and the action in position (hi; A) of the LR(1)-table isgh.Proof We prove part (1) by induction on the length of the derivation � n)�, andthen we observe that part (2) follows directly from part (1).Suppose �rst that n = 0, so � = �. Then the new stack is the same as theoriginal one, and part (1) is trivially true.Now suppose that n � 1 and that the result is true for items of the form(X ::= � �; b) where � d)� and d < n. Since n � 1 we must have � = y1�0where y1 6= � and y1)� d)�, where d < n. From the standard construction of theLR(1)-DFA states, we have that hq must contain the item (y1 ::= ��; a), and so,by induction, we can extend the execution path so that the stack is of the form0; x1; h1; : : : ; xq; hq; z1; k01; : : : ; zr; k0r

GLR parsing with a modi�ed DFA 47where � = z1 : : : zr, without moving the input pointer. Also from the LR(1)-DFAconstruction process we must have that k0r contains the item (y1 ::= � �; a), henceentry in position (k0r; a) of the table will contain a reduction by this rule, and sothere is an execution step in which the input pointer is not moved and the stackbecomes 0; x1; h1; : : : ; xq; hq; y1; k1where gk1 is the entry in position (hq; y1) of the LR(1)-table. From the LR(1)construction method we have that k1 contains the item (A ::= �y1 � �0; a), where�0 = y2 : : : yp. We have �0 f)� where 1 + d+ f = n, so f < n and, by induction,we can extend the execution path so that the stack is of the form0; x1; h1; : : : ; xq; hq; y1; k1; : : : ; yp; kpwithout moving the input pointer. This proves part (1).Now, by part (1), without moving the input pointer we can extend the ex-ecution path so that the stack is of the form in part (1). Since each yt isa non-terminal and hq contains the item (A ::= � � y1 : : : yp; a), the LR(1)-DFA state construction process guarantees that ht will contain the item (A ::=�y1 : : :yt � yt+1 : : : yp; a). Thus position (kp; a) of the LR(1)-table will containthe action to reduce by the rule A ::= ��. Thus there is an execution in whichthe input pointer is not moved, 2(k � i + p) symbols are popped o� the stack,and then A and the state h, such that gh is contained in position (hi; a) of theLR(1)-table, are pushed on to the stack. This gives the stack0; x1; h1; : : : ; xi; hi; A; has required for part (2).Theorem 1 For any context free grammar �, the LR(1)- and RM-parsers for� are equivalent in the sense that they accept the same set of strings.Proof Since the LR(1)-table for � is a subset of the RM-table for � (all ofthe actions in the LR(1)-table are also in the RM-table), for any execution paththrough the LR(1)-parser there is an identical execution path through the RM-parser. Thus any string accepted by the LR(1)-parser for � will also be acceptedby the RM-table based parser for �.To show that any string which is accepted by the RM-parser for � is alsoaccepted by the LR(1)-parser, we show that if, on input a1 : : :ai+1 there is anexecution path through the RM-parser which results in the stack0; x1; h1; : : : ; xp; hpand input pointer pointing at ai+1 then there is an execution path through theLR(1)-table based parser which results in the same stack and pointer position.If the execution path is empty then both parsers have stack containing justthe state 0 and the input pointer pointing at the �rst input symbol, so the resultis true.

GLR parsing with a modi�ed DFA 48Now suppose that the execution path in question consists of q � 1 executionsteps and that the result is true for paths with less than q steps. Suppose thatthe �rst (q � 1) execution steps in the path resulted in the stack0; y1; k1; : : : ; yt; ktwith the input pointer pointing at b, and that at the last execution step the actionact was selected. If act is of the form sk then to arrive at the given stack andpointer position, we must have b = ai and yl = xl, kl = hl for 1 � l � t = p� 1.Otherwise, we must have b = ai+1.By induction we can assume that there is an execution path, on input a1 : : :an$,in the LR(1)-table based parser which results in the stack0; y1; k1; : : : ; yt; ktand the input pointer pointing at b.If act was acc then the input pointer must have been pointing at ai+1, wemust have $ = ai+1 and, since acc does not alter the stack, yl = xl, kl = hl for1 � l � t = p. From the construction of the RM-table we must also have thatkt = hp is the accepting state of the underlying LR(1)-DFA. Thus position (hp; $)of the LR(1)-table will also contain the action acc, and the required executionpath exists in the LR(1)-table based parser.If acc was sk then, as we have already noted, the previous step would havebeen carried out on the stack0; x1; x1; : : : ; xp�1; hp�1with the input pointer pointing at ai. The action shp would also be in position(hp�1; ai) of the LR(1)-table, so the LR(1)-parser could also extend its executionpath in a way that results in stack0; x1; x1; : : : ; xp; hpand input pointer pointing at ai+1, as required.Finally suppose that act was (rj;m), so that at the previous step in theexecution path the stack had the form0; x1; h1; : : : ; xp�1; hp�1; z1; g1; : : : ; zm; gmand the input pointer was pointing at ai+1. By induction, there is an executionof the LR(1)-parser on the same input which results in the same stack and inputpointer position. Since the next step in the execution path of the RM-parserresults in the stack 0; x1; h1; : : : ; xp; hpwe must have that xp is the left hand side of rule j and that position (hp�1; ai+1)of the RM-table, and hence of the LR(1)-table, contains the action ghp. Fur-thermore, by construction of the RM-table, the DFA state gm must contain anitem (xp ::= � � �; ai+1), where j�j = m and � �)�. Then, by Lemma 1, there is acontinuation of the LR(1)-parser's execution path with results in the stack0; x1; h1; : : : ; xp; hpand input pointer remaining at ai+1, as required.

GLR parsing with a modi�ed DFA 496.4.4 Correctness of the GRMLR algorithmWe have already shown that an RM-parser accepts the same language as theLR(1)-parser for the same grammar, and we assume that the latter accepts pre-cisely the language generated by the underlying grammar. The problem is thatboth of these machines are, in general, non-deterministic; for a given input stringwe cannot tell whether there is an execution path of the machine which resultsin acc.We de�ne a determining algorithm for a table based parser to be an algorithmwhich determines whether or not, given a grammar and an input string, there isan execution path through the table based parser which results in acc.Tomita's Algorithm 2 was designed to be an LR(1)-table determining algo-rithm, but it fails to terminate on grammars with hidden left recursion. Algo-rithm 1e was also designed to be an LR(1)-table determining algorithm, but theproblem here is that with certain grammars which contain right nullable rulesAlgorithm 1e erroneously reports that no execution path exists.We de�ne a determining algorithm to be correct for a table based parser if,given any input string, it terminates and reports success if there is an executionpath of the table based parser which reports acc, and terminates and reportsfailure otherwise. It is believed that Tomita's Algorithm 2 is correct for LR(1)-parsers whose tables have been generated from grammars without hidden leftrecursion, and that Algorithm 1e is correct for LR(1)-parsers whose tables havebeen generated from grammars without right nullable rules. We shall prove thatthe GRMLR algorithm given in Section 6.2 is a correct determining algorithm forRM-parsers whose associated tables have been generated from any context freegrammar.The problem with Tomita's Algorithm 2 is that it fails to terminate in certaincases. It is also true that Aycock and Horspool's algorithm fails to terminate ongrammars which contain hidden left recursion [AH99]. We begin by proving thatthe GRMLR algorithm terminates for all RM-parsers and all input strings.Lemma 2 For all context free grammars, the GRMLR algorithm given in Sec-tion 6.2 terminates for all input strings.Proof We suppose that the algorithm is using an RM-table withN rows (states),constructed from a context free grammar �, and that the input string is a1 : : :an.First we calculate an upper bound on the size of the GSS.Each set Ui of level i nodes has only one node labelled with each state number,so it contains at most N nodes. Thus the GSS contains at most (n + 1)N statenodes. All edges from a node u 2 Ui are the �rst edge in a path of length 2 to anode in some Uj where j � i. At most one edge is added from a node u 2 Ui bythe SHIFTER, all other edges are added by the REDUCER and this checks forthe existence of a path of length 2 before adding the edge. Thus there is at mostone path of length 2 from Ui to each of the (i+ 1)N nodes in the Uj with j � i.Thus there are at most (i+1)N edges from each node in Ui, and hence there areat most (i+1)N2 symbol nodes which are successors of nodes in Ui. So the GSS

GLR parsing with a modi�ed DFA 50contains at most(nXi=0(i+ 1)N2) + (n+ 1)N = (n+ 1)((n+ 2)N2 + 2N)2nodes (state and symbol nodes).The GSS is a bipartite graph and every edge has a symbol node either as itssource node or its target node. The GSS construction guarantees that symbolnodes have only one predecessor, so there are as many edges whose target is asymbol node as there are symbol nodes. All the edges from a given symbol nodeare guaranteed to have target nodes in the same Uj , thus each symbol node is thesource node of at most N edges. Thus the GSS contains at most the followingnumber of edges.(N + 1)(nXi=0(i+ 1)N2) = (n+ 1)(n+ 2)N2(N + 1)2 :The for loops in REDUCER(i) iterate over �nite sets which are not modi�edduring the execution of the loop, thus this function will always terminate. Thefor loops in SHIFTER(i) iterate over table entries, and these are �xed. Thewhile loop in SHIFFTER(i) removes an element from Q at each iteration, anddoesn't add any elements to Q, thus SHIFTER(i) always terminates. So to showthat the algorithm always terminates we need to show that the while loop inthe function PARSER terminates for each value of i. Each time REDUCER(i)executes it removes an element from the set R of pending reductions. Lookingat the structure of REDUCER(i), we see that it only adds elements to R whena new edge is created in the GSS. We have already seen that there can onlybe a �nite number of edges in the GSS, so REDUCER(i) must eventually stopadding elements to R, but continue removing one each time it is executed. Thus,eventually, we will have R = ; and the while loop will terminate, as required.In order to show that the RM-table determining algorithm given in Section 6accepts precisely the language accepted by the RM-table (and hence by Lemma1the LR(1)-table) based parser, we need the following lemma which addresses theimpact of nullable non-terminals on the GSS and on the parse table.Lemma 3 If there is a path��� x� � ���kh v u win the GSS constructed with an RM-table and input a1 : : : an, in which w andv lie in the same Ui, then x �)�. Furthermore, the state h in the LR(1) DFAcontains an item (x ::= �; ai+1), where �)�. Hence the RM-table contains theelement (rf; 0) in position (h; ai+1), where f is the rule x ::= , and position(h; x) contains the element gk.Proof Since w; v 2 Ui, the edge (u; v) must have been constructed as a resultof processing a reduction (v0; x;m), where there is a path of length 2(m� 1) (orof length 0 if m = 0) from v0 to u,

GLR parsing with a modi�ed DFA 51���0 ���h y1 ���k1v0 v� � � �� ym ���km v0� � � ��x ���k��ZZZ} wand we must have that position (h; x) of the RM-table contains the element gk.Looking at REDUCER(i) and SHIFTER(i) we see that for (v0; x;m) to be inR at this point we must have either that1. (rf; 0) lies in position (km; ai+1) of the RM-table, where f is a rule of theform x ::= , so m = 0, v0 = v, km = h, and �)�, or2. there is a node zm 2 Ui with label km, such that there is a path of length 2from zm to v0 and (rf;m) lies in position (km; ai+1) of the RM-table, wheref is a rule of the form x ::= y1 : : : ym�, and � �)�.���0 ���h y1 ���k1v0 v� � � �� y2 ���km�1v0 = zm�1� � � ��x ���k��ZZZ} w ym ���km zm��uu1 z1 u2 umEach of the nodes zd must lie in Uj for some j � i. Since v 2 Ui and there is apath from each of these nodes to v, in fact they must all lie in Ui.We now prove the results by induction on the order in which the edges in theGSS were created.If (w; u) and (u; v) are the �rst edges created then v = v0 and w 2 U0. Sincethere are no paths in the GSS before this one is created, we must be in Case1 above, x) �)�, and (rf; 0) lies in position (0; a1). Thus, by the RM-tableconstruction rules, we must have (x ::= �; a1) in state 0.Now suppose that the result is true for edges which were created before (u; v).If (v0; x;m) falls in to Case 1 above, then we have x) �)� and (rf; 0) lies inposition (0; ai+1). So we must have (x ::= �; ai+1) in state h, as required.If (v0; x;m) falls in to Case 2 then all of the edges (ud; zd�1), where 1 � d � mand z0 = v, were created before the edge (u; v), and so, by induction, yd �)� for1 � d � m. Thus we have x)y1 : : : ym� �)�, and since (rf;m) lies in posi-tion (km; ai+1) of the RM-table, km contains the item (x ::= y1 : : :ym � �; ai+1).Then, by the correspondence between paths of length 2 in the GSS and transi-tions in the LR(1) DFA, we have that kd�1 contains the item (x ::= y1 : : : yd�1 �yd : : : ymy�; ai+1). Thus h = k0 contains the item (x ::= �y1 : : :ymy�; ai+1) andy1 : : :ymy� �)�, as required.Theorem 2 Given any context free grammar � and any input string, u, theGRMLR algorithm given in Section 6.2 terminates and reports success if there isan execution of the LR(1)-parser for � which results in acc, and terminates andreports failure otherwise.Proof From Theorem 1 it is su�cient to show that the GRMLR algorithmterminates and reports success if there is an execution of the RM-table basedparser with results in acc, and terminates and reports failure otherwise. We havealready shown that the algorithm always terminates, so we need to show that it

GLR parsing with a modi�ed DFA 52reports success on input u if and only if the there is an execution path throughthe RM-parser which results in acc.Let G be the GSS constructed from the RM-table for � and input a1 : : :an,let an+1 = $, and let v0 be the base node of G, the �rst node constructed.()): We suppose that the GRMLR algorithm reports success. We shall showthat, if there is a node v 2 Ui and a path��� xi� � ���h10 x2� � ���hq�1 xq� � ���hqv0 u1 v1 u2 vq�1 uq v� � �in G then there is an execution path through the RM-parser on input a1 : : : an+1which results in the stack 0; x1; h1; : : : ; xq; hqand input pointer pointing at ai+1. Then, since the GSS reports success, there isa node vn 2 Un whose label, hn, is the accept state of the RM-table. Thus thereis an execution path through the RM-parser which results in hn on the top ofthe stack and the input pointer pointing at an+1 = $. Since acc lies in position(hn; $) of the RM-table, this execution path can be extended to result in acc.The proof is by induction on the order in which the edges in G are created.If the path from v under consideration has no edges then we must have v = v0and i = 0. The start con�guration of an RM-table based parser ensures that thereis an (empty) execution path which results in 0 on the stack and the input pointerpointing to a1, so the result is trivially true.Now suppose that the edge (uj ; vj�1) was the last of the edges in the pathto be created and suppose that the result is true for all nodes and paths whichcontain only edges created before (uj ; vj�1).If the edge (uj ; vj�1) was created by the SHIFTER then, since it was the lastedge in the path to be created, we must have j = q, vq�1 2 Ui�1 and shq must bean entry in position (hq�1; ai) of the RM-table. Then, since all the edges on thepath from vq�1 to v0 were created before the edge (uq; vq�1), by induction thereis an execution path through the RM-parser on input a1 : : : an+1 which results inthe stack 0; x1; h1; : : : ; xq�1; hq�1and input pointer pointing at ai. Since the action shq lies in position (hq�1; ai)of the RM-table, this execution path can then be extended to give the stack0; x1; h1; : : : ; xq�1; hq�1; xq; hqleaving the input pointer pointing at ai+1.Now suppose that the edge (uj ; vj�1) was created by the REDUCER. Sincethis is assumed to be the last edge created and since vq 2 Ui, this edge must havebeen created by REDUCER(i) while processing an element (v0; xj; m) and thereis a path��� xi ���h10 x2 ���hj�1 y1 ���k1v0 u1 v1 u2 vj�1� � � ����� y2 ���km�1v0� � � ��xj ���hj�� xq ���hq v� � � ��ZZZ}

GLR parsing with a modi�ed DFA 53in G. Looking at REDUCER(i) and SHIFTER(i) we see that for (v0; xj; m) tobe in R at this point we must have either that1. (rf; 0) lies in position (km; ai+1) of the RM-table, where f is a rule xj ::= ,so m = 0 and v0 = vj�1, or2. there is a node w 2 Ui with label km, such that there is a path of length 2from w to v0 and (rf;m) lies in position (km; ai+1) of the RM-table, wheref is a rule of the form xj ::= � and j�j = m.��� xi ���h10 x2 ���hj�1 y1 ���k1v0 u1 v1 u2 vj�1� � � ����� y2 ���km�1v0� � � ��xj ���hj�� xq ���hq v� � � ��ZZZ} ym ���km w��In Case 1, by induction, there is an execution path through the RM-parser oninput a1 : : :an+1 which results in the stack0; x1; h1; : : : ; xj�1; hj�1without moving the input pointer. Since (rf; 0) lies in position (hj�1; ai+1) ofthe RM-table, there is a continuation of the execution path which results in thestack 0; x1; h1; : : : ; xj�1; hj�1; xj ; hjwithout moving the input pointer. In Case 2, since all of the path from w to vj�1was created before the edge (uj ; vj�1), by induction, there is an execution paththrough the RM-parser on input a1 : : : an+1 which results in the stack0; x1; h1; : : : ; xj�1; hj�1; y1; k1; : : : ; ym; kmand input pointer pointing at ai+1. Since (rf;m+ 1) lies in position (l; ai+1) ofthe RM-table, there is a continuation of the execution path which again resultsin the stack 0; x1; h1; : : : ; xj�1; hj�1; xj ; hjwithout moving the input pointer.From the operations in REDUCER(i) we see that we must have vj 2 Ui, andhence vd 2 Ui for j < d � q. Then, by Lemma 3, the RM-table contains entries(rfd; 0) in position (hd�1; ai+1), where fd has left hand side xd, and position(hd�1; xd) contains the element ghd. Thus we can continue the above executionpath to generate stacks0; x1; h1; : : : ; xj�1; hj�1; xj ; hj ; xj+1; hj+10; x1; h1; : : : ; xj+1; hj+1; xj+2; hj+2...0; x1; h1; : : : ; xq; hqwithout moving the input pointer, as required.

GLR parsing with a modi�ed DFA 54((): We suppose that there is an execution path through the RM-parser whichresults in acc. We shall show that, if there is an execution path through theRM-parser on input a1 : : :an+1 which results in the stack0; x1; h1; : : : ; xq; hqand input pointer pointing at ai+1, then there is a node v 2 Ui and a path��� xi� � ���h10 x2� � ���hq�1 xq� � ���hqv0 u1 v1 u2 vq�1 uq v� � �in G. Then, since the RM-parser results in acc, there is an execution path throughthe RM-parser which results in hn, the accept state, on the top of the stack andthe input pointer pointing at an+1 = $. So there is a node vn 2 Un whose labelis hn, and the GRMLR algorithm will report success.We prove the result by induction on the number of execution steps in theexecution path.When the execution begins, the input pointer points at a1 and the stack justcontains the start state, 0. The GSS has base state v0 2 U0, and clearly there isa path of length 0 from v0 to itself.Now suppose that it takes M execution steps to result in the stack0; x1; h1; : : : ; xq�1; hq�1; xq; hqand input pointer pointing to ai+1, and that the result is true for execution pathswhich contain fewer than M steps.If the last execution step, the one which resulted in the given stack andposition, was a shift action, then it must have been shq, this action must lie inposition (hq1 ; ai) of the RM-table, we must have xq = ai, and the stack musthave been 0; x1; h1; : : : ; xq�1; hq�1By induction, there is a path in the GSS from a node vq�1 2 Ui to the nodev0. If q = 1 then shq is added to Q at the start of the algorithm. Otherwise,shq is added to Q when the node vq�1 was created either by the REDUCER orthe SHIFTER. Then, when SHIFTER(i) is executed, the node vq and a path oflength 2 from vq to vq�1 will be created, as required.Now suppose that the last execution step was a reduction, so that the stackwas of the form 0; x1; h1; : : : ; xq�1; hq�1; y1; k1; : : : ; ym; kmwith the input pointer pointing at ai+1. Thus (rf;m) lies in position (km; ai+1) ofthe RM-table, where f is xq ::= y1 : : :ym�, � �)�, and ghq lies in position (hq�1; xq)of the RM-table. By induction, there is a path in the GSS��� xi ���h10 ���hq�1 y1 ���k1v0 u1 v1 vq�1� � � ���� y2 ���km�1wm�1� � � ��� ym ���kmwm��w1with wm 2 Ui.If vq�1 2 Ui then all of the state nodes from wm to vq�1 must also be inUi. Hence, by Lemma 3, we must have yd �)�, for 1 � d � m. Since the item

GLR parsing with a modi�ed DFA 55(xq ::= y1 : : : ym � �; ai+1) lies in km, the item (xq ::= �y1 : : : ym�; ai+1) lies in hq�1and thus (rf; 0) lies in position (hq�1; ai+1) of the RM-table. Looking at theGRMLR algorithm, we see that when the node vq�1 was created, the pendingaction (vq�1; xq; 0) would have been added to R. Since vq�1 2 Ui, this actionwould be removed from R during the ith step of the GSS construction. When thisaction was removed from R, a node vq 2 Ui labelled hq and the path vq; uq; vq�1would have been added to the GSS if they were not already there. Thus there isa path from vq to v0, as required.Now suppose that wp�1 62 Ui and that wd 2 Ui for d � p (here vq�1 = w0).We may assume that 1 � p � m. By the same reasoning as above we have that(rf; p) lies in position (kp; ai+1) of the RM-table. If the path��� yp� � ���kpkp�1wp�1 wpwas created by the SHIFTER then, since wp 2 Ui, it must have been created bySHIFTER(i� 1). Since (rf; p) lies in position (kp; ai+1) and p � 1, (wp�1; xq; p)would have been added to R by SHIFTER(i � 1). If this path was created bythe REDUCER, it must have been REDUCER(i). For REDUCER(i) to createthe above path of length 2 to vp�1 it must be processing a reduction of the form(v0; xp; m0) and there must be a path of length 2(m0 � 1), or length 0 if m0 = 0,from v0 to wp�1. If m0 = 0 then we must have v0 2 Ui and wp�1 = v0, whichis contrary to the assumption that wp�1 62 Ui. Thus we must have m0 6= 0 and(wp�1; xq; p) would have been to added R by REDUCER(i). Thus, in either case,when the element (wp�1; xq; p) was removed from R for processing, a node vq 2 Uilabelled hq and the path vq; uq; vq�1 would have been added to the GSS if theywere not already there.This completes the proof.6.5 The reduction modi�ed DFA and LR(1) grammarsIn this section we shall study the conicts that can arise in a reduction modi�edtable generated from an LR(1) grammar. We shall show that, as long as thegrammar is LR(1), such conicts can be resolved by removing multiple reductions.As a side e�ect, if the correct reductions are removed, the resulting algorithm isslightly more e�cient in the sense that there is a slight reduction in stack activity.We begin with two lemmas on the nature of DFA states which contain rightnullable items. These lemmas will be required in the subsequent proofs.Lemma 4 If a DFA state h contains an item of the form (A ::= � �D�; a) whereD� +)�, for some non-terminal, Z, D �)rm Z �)�, and for all such Z, h containsthe item (Z ::= �; a).Proof If D� +)� then D p)rm �, for some p � 1. If p = 1 then we can take Z = D.If p � 2 then we have D)C p�1)rm �, so C q)rm � for some q � p � 1 and, by theconstruction of DFA states, (D �C; a) lies in h. Thus, by induction, there existssome Z such that C �)rm Z)�. Since �)�, we have D)C �)rm C �)rm Z)�, asrequired.

GLR parsing with a modi�ed DFA 56Now suppose that Z is a non-terminal such that D q)rm Z)�, where q � 0.If q = 0 then Z = D and, by construction of the DFA states and since � �)�,(D ::= �; a) lies in h. Now suppose that q � 1 and that D)C q�1)rm Z)�. Sincethis is a rightmost derivation and Z is a non-terminal, we must have C k)rm Z,where k � q � 1. By the DFA construction process, we have that (D �C; a) liesin h. So, by induction, (Z ::= �; a) lies in h, as required.6.5.1 The correctness of reduced RM-tables for LR(1) grammarsIn this section we shall examine the properties that RM-tables have when thegrammar is known to be LR(1), we shall de�ne the concept of a reduced RM-table, and we shall we prove that the table based parser which uses a reducedRM-table de�ned above is correct for LR(1)-grammars.We suppose that we have an RM-table which is constructed from an LR(1)-grammar, �, so that there are no conicts in the LR(1)-table.Lemma 5 If � is an LR(1) grammar then the RM-table for � cannot containany shift/reduce conicts.Proof Suppose that position (h; a) of the RM-table contains a shift/reduceconict, sk and (rf;m) say. From the RM-table construction we must have thatthe DFA state h contains items of the form (X ::= � � a�; b) and (Y ::= � � �; a),where j� j = m and � �)�.If � = � then this conict would also appear in the LR(1)-table, contrary tothe assumption that � is LR(1).If � 6= � then we have � = B1�1, where B1 +)� and �1 �)�. Then, by Lemma 4,h contains an item of the form (Z ::= �; a) and there would be a conict in theLR(1)-table. Thus the RM-table cannot contain a shift/reduce conict if � isLR(1).De�nition A reduced RM-table is a table obtained by removing some, but notall, of the reductions from the entries in the RM-table.From Lemma 4 we see that if an entry in an RM-table contains a reductionthen it contains an LR(1) reduction, thus the LR(1)-table is a reduced RM-tableobtained by simple removing all the non-LR(1) reductions. In Section 6.5.2 weshall prove a lemma which describes the relationship between reductions in thesame entry of an RM-table and use this to select which reduction to retain,removing all the others so that the table becomes conict-free. Before we dothis we prove the following theorem, which shows that reduced RM-parsers arecorrect for LR(1)-grammars.Theorem 3 If � is an LR(1) grammar then the language accepted by a reducedRM-parser for � is precisely the language generated by �.Proof Suppose that the input string u is accepted by a given reduced RM-parser. The reduced RM-table is a subset of the RM-table so the execution pathwhich results in acceptance is also an execution path through the RM-parser.

GLR parsing with a modi�ed DFA 57Then, by Theorem 1, u is accepted by the LR(1)-parser and hence is in thelanguage generated by �.Conversely, suppose that u = a1 : : : an is in the language generated by �.Then u is accepted by the LR(1)-parser for �. We shall show, by induction onthe length of the execution path, that if there is an execution path, � say, throughthe LR(1)-parser on input u which results in the stack0; x1; h1; : : : ; xm; hmand the input pointer pointing at ai+1, then there is a (possibly trivial) extensionof this execution path, �0, which results in the stack0; z1; l1; : : : ; zp; lpand the input pointer pointing at ai+1, such that there is an execution path, 	,through a given reduced RM-parser which results in the same stack and inputpointer position.The result follows from this because, since u is accepted by the LR(1)-parser,there is an execution path through this parser which results in a stack with theaccept state on top and the input pointer pointing at $. Since the grammar isLR(1), there is no non-trivial extension of this execution path, so there must bea path through the reduced RM-parser which results in the same stack and inputpointer position, hence it will also accept u.If the execution path through the LR(1)-parser has length 0 then the stackjust contains the start state and the input pointer points to a1. Clearly, the zerolength execution path through the reduced RM-parser results in the same stackand input position, thus we can take the trivial extension of the execution paththrough the LR(1)-parser.Now suppose that we have a given execution path, �, through the LR(1)-parser which results in the stack0; x1; h1; : : : ; xm; hmand the input pointer pointing at ai+1, and that for all execution paths of shorterlength there is an extension and a corresponding path through the reduced RM-parser which result a common stack and the input pointer still pointing at ai+1.If the last step in the given execution path � was a shift action then we musthave that the execution path, �1, up to the point of this last step resulted in thestack 0; x1; h1; : : : ; xm�1; hm�1with the input pointer pointing at ai, and that position (hm�1; ai) of the LR(1)-table contained the action shm. By induction there is an extension, �01, of �1 andan execution path, 	1, through the reduced RM-parser which result in a commonstack and the input pointer pointing at ai. Since the grammar is assumed to beLR(1), the only execution step which can be taken from state hm�1 with inputai is shm, which will advance the input pointer. Thus the extension of this pathmust be the trivial extension, so �01 = �1, and so 	1 must result in the stack0; x1; h1; : : : ; xm�1; hm�1

GLR parsing with a modi�ed DFA 58with the input pointer pointing at ai. The shift actions in the reduced RM-tablecorrespond exactly to the shift actions in the LR(1)-table, so position (hm�1; ai)of the reduced RM-table contains the action shm. Thus 	1 can be extended toresult in the stack 0; x1; h1; : : : ; xm�1; hm�1; ai = xm; hmand the input pointer pointing at ai+1.Finally suppose that the last step in the given execution path through theLR(1)-parser was a reduce action, so we must have that the execution path, �1,up to the point of this last step resulted in the stack0; x1; h1; : : : ; xm�1; hm�1; y1; k1; : : : ; yq; kqwith the input pointer pointing at ai+1, that position (kq; ai+1) contained theaction rj, where j is the rule xm ::= y1 : : :yq , and that position (hm�1; xm) of theLR(1)-table contained the action ghm. Position (kq; ai+1) of the RM-table for �contains the action (rj; q), so this entry in the reduced RM-table must containan action of the form (ri; t) where i is a rule of the form Z ::= �, jj = t, and� �)�.Now, by induction there is an extension, �01, of �1 and an execution path, 	1,through the reduced RM-parser which result in a common stack and the inputpointer pointing at ai+1. If this extension is non-trivial (i.e. includes at leastone additional execution step) then, since the grammar is LR(1), �01 is also anextension of �, and we can take 	 = 	1, giving the result. Thus we assume that�01 = �1 and thus that 	1 results in the stack0; x1; h1; : : : ; xm�1; hm�1; y1; k1; : : : ; yq; kq= 0; z1; l1; : : : ; zp�1; lp�1; w1; g1; : : : ; wt; gtwith the input pointer pointing at ai+1. We can extend 	1 to 	 by performingthe reduction (ri; t) which results in the stack0; z1; l1; : : : ; zp�1; lp�1; Z; lpwhere position (lp�1; Z) of the reduced RM- (and the LR(1)-) table contains theaction glp. By Lemma 1 there is an extension, �0, of �1 which results in thesame stack. Since � is LR(1) there is a unique next execution step from eachexecution path through the LR(1)-parser, thus �0 must also be an extension of�, as required.Note The above theorem actually shows that although the RM-table for anLR(1) grammar may contain conicts it doesn't matter which of the conictingreductions is chosen, the parse will be successful if the input string is in thelanguage.6.5.2 Resolved RM-parse tablesIn this section we shall describe the relationship between reductions in the sameentry of an RM-table, and show that there is a base reduction which is generated

GLR parsing with a modi�ed DFA 59by the other reductions. We shall then give an example which compares anLR(1)-parser with the (deterministic) reduced RM-parser obtained by retainingthe base reductions and removing all other conicting reductions.Lemma 6 Suppose that � is an LR(1) grammar and that h is a state in theLR(1) DFA for � which contains an RM-table reduce/reduce conict, then hcontains an item of the form (Y ::= � � C�; a), called a base item, such thatC� +)� and for all other items (Z ::= � �; a) in h, with � �)�, C �)rm Z and = �.Proof Suppose that the DFA state h contains two items of the form (X ::=� � �; a) and (Z ::= � �; a), where � m)rm � and � n)rm �. If m = n = 0 then � isnot LR(1), thus without loss of generality we may suppose that m � 1. We shallprove, by induction on m + n, that = � and that � = B� , where B �)rm Z. Weshall then show that the result follows from this.Since m � 1 we have � = B� where B +)�. Also, by Lemma 4, there is anon-terminal D such that B �)rm D and (D ::= �; a) lies in h. Furthermore, eitherB = D or there is some non-terminal E such that B �)rm E)D�, where � q)rm �and 0 � q � m. Then the item (E ::= �D�; a) lies in h.If n = 0 then � = � and so, since the grammar is LR(1), to avoid a re-duce/reduce conict in h we must have Z = D and = �. Thus the result is truefor m+ n = 1, and for all values of m+ n when n = 0.Now suppose that n � 1, and that for any DFA state k which contains twoitems (X 0 ::= �0 � �0; a0) and (Z 0 ::= 0 � �0; a0), where � m0)rm �, � n0)rm �, m0 � 1 andm0 + n0 < m+ n, then 0 = � and �0 = B0� 0, where B0 �)rm Z0.Since n � 1 we have � = C� where C)� p)rm �, and p < n. By constructionof the DFA states we have that (C ::= ��; a) lies in h and m + p < m + n, so,by induction, B �)rm C and � = �. But then, since � is LR(1) and (C ::= �; a) and(D ::= �; a) both lie in h, we must have C = D.From the DFA construction, there is a state k which can be reached from hvia a transition labelled D, and k contains (Z ::= D ��; a) and (X ::= �D � �; a),if B = D, or (E ::= D � �; a). Furthermore, � n0)rm �, � m0)rm � and � q)rm �, wheren0 < n and m0; q � m.If (E ::= D � �; a) 2 h) and n0+ q � 1, then by induction either D or D mustequal �. This is a contradiction. Thus we must have n0 = q = 0 and � = � = �.But then, since � is LR(1), we must have E = Z and = �, so B �)rm Z, asrequired.If (X ::= �D � �; a) 2 k then, again, by induction we must have n0 = m0 = 0and � = � = �. In this case, since we assumed that the original items weredistinct, k contains an LR(1) reduce/reduce conict, contrary to the assumptionthat � is LR(1).Finally we need to show that h contains an RM-table reduce/reduce conictthen h contains a base item, as de�ned in the statement of the lemma. If hcontains two distinct items of the forms (Y ::= � ��; a) and (X ::= � ��; a), where� �)� and � �)�, then, since � is LR(1) we may assume that � 6= �. So � = C� +)�.

GLR parsing with a modi�ed DFA 60But then by the above argument, for any other item (Z ::= � �; a) in h, we musthave = � and C �)rm Z, as required.De�nition If � is an LR(1) grammar we de�ne resolved RM-table for � to bethe reduced RM-table obtained by taking the RM-table for � and resolving thereduce/reduce conicts, if there are any, by selecting a base item (X ::= � � �; a)and removing all other reductions in that entry of the table.By Theorem 3 we see that a resolved RM-parser is correct for any LR(1) grammar.A resolved RM-parser is also clearly deterministic for LR(1) grammars. Finally,although we do not show it here it is not hard to see that the resolved RM-parseris the most e�cient reduced RM-parser in the sense that it induces the least stackactivity. We illustrate this with the following example.S0 ::= SS ::= aA j �A ::= BBC j bB ::= CCC ::= �S ::= �aA; $ aS0 ::= �S; $ S ::= a �A; $A ::= �b; $A ::= �BBC;$- B B C ::= �;$A ::= BB �C; $'& $%- -�
 �	S ::= aA�; $0 9 5 23 �
 �	A ::= BBC�; $ 1C�
 �	S0 ::= S�; $ A ::= B � BC; $C ::= �; $B ::= �CCC; $ �� ������=HHHHj?S 8 A#" !'& $%C ::= �; $B ::= C �C; $ 4�� �� �
 �	B ::= CC�;$ 3���> ���> -CCCB ::= �CC; $C ::= �; $RM-parse table $ a b A B C S0 (r2,0) s9 g91 (r3,3)2 (r6,0) (r3,2) g13 (r5,2)4 (r6,0) (r5,1) g35 (r6,0) (r5,0) (r3,1) g2 g46 (r1,2)7 (r4,1)8 acc9 (r6,0) (r5,0) (r3,0) (r1,1) s7 g6 g5 g4

GLR parsing with a modi�ed DFA 61LR(1)-parse table$ a b A B C S0 r2 s9 g91 r32 r6 g13 r54 r6 g35 r6 g2 g46 r17 r48 acc9 r6 s7 g6 g5 g4resolved RM-parse table$ a b A B C S0 (r2,0) s9 g91 (r3,3)2 (r3,2) g13 (r5,2)4 (r5,1) g35 ((r3,1) g2 g46 (r1,2)7 (r4,1)8 acc9 (r1,1) s7 g6 g5 g4We use the LR(1)-table and the resolved RM-table to parser the input string a,showing that the resolved RM-parser requires much less stack activity.LR(1)-table resolved RM-tablestack input next stack input nextpointer action pointer action0 a s9 0 a s90a9 $ r6 0a9 $ (r1,1)0a9C4 $ r6 0S8 $ acc0a9C4C3 $ r50a9B5 $ r60a9B5C4 $ r60a9B5C4C3 $ r50a9B5B2 $ r60a9B5B2C1 $ r30a9A6 $ r10S8 $ acc

Experimental results 627 Experimental resultsWe have implemented Algorithm 1e and our GRMLR algorithm (with the slightmodi�cation described in Section 6.3), and we have run these algorithms onseveral test grammars. In this section we shall describe these experiments anddiscuss the results.The aim of this report is to explore the theoretical aspects of Tomita-styleGLR algorithms in a way which allows feed-back into improvements in the algo-rithms and which illuminates implementation. Our discussion in this section isintended only to illustrate the e�ects of our modi�cations with explicit examples.Thus we shall not discuss here the actual implementations or the many imple-mentation issues which needed to be addressed. However, the implementationsform part of the GTB toolset which can be downloaded fromhttp://www.cs.rhul.ac.uk/research/languages/index.shtmlThe GTB input and output �les for the examples discussed in this section canbe found in the GTB version 1.0 distribution.7.1 The experimentsWe have run both Algorithm 1e and our GRMLR algorithm on a grammar forANSI-C, a grammar for (a slightly extended) level 0 ISO-Pascal, and on four `toy'grammars which feature right-nullable rules. In all cases we have used the LR(1)table as the basis of the algorithms, but our parser generator tool (GTB) can becon�gured to generate and use LR(0), SLR(1) or LALR tables if preferred.The aims of our experiments were �rstly to test the practicality of the Tomitaapproach, secondly to test the e�ects of our GRMLR algorithm, and thirdly tocompare our GRMLR algorithm with Tomita's original algorithm.The �rst aim was addressed by using grammars for the real languages ANSI-C and Pascal. In both cases the grammars were speci�ed in BNF, because atthe moment our generalised parser generators have not been extended to acceptEBNF. We were interested in the sizes of the graph structured stacks generatedand the amount of e�ort required to build them. Thus the output of the ex-periments includes the number of nodes of each type in the �nal GSS, and thenumber of times each of these nodes is visited during the construction. For bothC and Pascal the parsers generated were run on a large input program �le.The second and third aims were combined and then de-composed into twoparts: checking that the GRMLR algorithm could handle right-nullable gram-mars, and considering the potential decrease in e�ciency that might be intro-duced because of the increased number of conicts in the underlying parse table.To look at the e�ect of the two algorithms on right-nullable grammars welooked at four small examples. The �rst twoS ::= aAAA j �A ::= a j � S ::= aSAAA j �A ::= a j �contain a relatively large amount of right-nullability and ambiguity. The secondalso contains hidden right recursion. However, both of them are correctly parsable

Experimental results 63using Algorithm 1e. The third,S ::= aDad j BDabD ::= aABA ::= aBB j �B ::= �is parsable with Algorithm 1e if the nodes in the Ui are processed in a certainorder but not if they are processed in a di�erent order, see Section 4.5. Ourimplementation of Algorithm 1e has been set up to process the nodes in an orderwhich shows the failure. (Note, this grammar does not contain hidden rightrecursion.) The fourth grammar, below, is not parsable by Algorithm 1e at all,see Section 4.4. S ::= bAA ::= aAB j �B ::= �As for the potential increase in e�ciency of our GRMLR algorithm, the con-cern comes from the fact that there are more conicts in the parse table (althoughno more states) and that this may lead to more states in a given Ui in the GSS,and hence to a larger and less e�cient structure. In fact we claim that the GSSconstructed by our (slightly modi�ed) method is identical to the GSS constructedby Algorithm 1e in the cases where Algorithm 1e works. Although there are moreconicts in the table, for a given input string the same number of conicts areencountered, it is just that some of them are encountered earlier in the stack con-struction process. Furthermore, when right-nullable reductions are applied onlythe non-nullable left portion of the rule is retraced, so the length of path traversedin the GSS when performing such a reduction is less than for Algorithm 1e. So ourconstruction method is in fact slightly more e�cient! We illustrate these e�ectsby counting the numbers of nodes and edges in the GSSs constructed by eachalgorithm, and observing that they are identical, and by counting the numberof node visits made by each algorithm and observing that in cases where thereare right nullable rules this number is lower for our GRMLR algorithm than forAlgorithm 1e.All our experiments have been run on a 400MHz Pentium II processor with128Mbyte RAM using GTB version 2.00 compiled using Borland C version 5.17.2 The resultsExperiment 1: ANSI-CAim: Parse the source code for Quine-McCluskey minimiser `bool' [Joh93] usingANSI-C grammar from [KR88].The grammar is modi�ed to allow the lexer primitive string to match one ormore `STRING' keywords so as to model ANSI-C automatic string concatenationwhich is usually handled in the lexer.

Experimental results 64Preparation:1. Remove preprocessor lines and comments from bool source by passing throughthe Borland 5.1 standalone preprocessor.cpp32 -P- bool.c2. The preprocessor leaves #pragma lines in the expanded code marking �leinclusion boundaries. A side-e�ect of the preprocessor is that many blank linesare left in expanded source code.Manually remove #pragma lines (8) and blank lines from bool.i3. Borland C version 5.1 standard library headers contain some non-ANSI-Csyntax.Manually remove lines from Borland header �les: leaving 796 lines4. Produce `lexicalised' source by replacing integer constants with the keywordINTEGER, identi�ers by ID etc, using an RDP generated C pretty printer with-L (lexicalise) option.pretty_c -L bool.i > bool.str796 lines, 4921 tokens, average of 5.39 tokens per line. (Note: original sourceshows 3.83 tokens per line showing e�ects of comment and blank line removal.)5. Create C tomita.gtb and C null.gtb each with ten calls to the tomita 1 (Al-gorithm 1e) and tomita 1 nullable accepts (GRMLR) parsers respectively.Experimental runs:The �rst run below is the Algorithm 1e running on the ANSI C grammar, thesecond run is the GRMLR algorithm.gtb -T70000 C_tomita.gtblr(1) parse table requires 285723 cells: 421 cells have conflictsgtb -T70000 C_null.gtblr(1) parse table requires 285723 cells: 421 cells have conflictsRun times, showing non-linearity in memory allocation subsystem:run no. 1 2 3 4 5 6 7 8 9 10time 1.18 1.19 1.18 1.18 1.19 1.36 1.52 1.86 2.02 3.03Each run of the parser creates a new copy of the GSS data structure each ofwhich contains more than 100,000 nodes and edges. After the �fth run we seethat parse times begin to increase. This e�ect is generated by non-linearities inthe memory allocator for Borland-C: heap fragmentation has been observed togenerate at least quadratically increasing allocation times in other applicationsonce a certain level of allocation has been reached. We should stress that thisbehaviour is not a side e�ect of page swapping since system monitoring showsthat the whole set of GSS's �ts into physical memory and no swapping occurs.

Experimental results 65Tomita-style parsers must, of course, necessarily create large structures whenparsing long strings. The rather few reports of Tomita-parsing performance inthe literature usually ignore the impact of allocating such structures on the parserrun time, possibly because typical Tomita applications are in natural languageparsing where the strings are often very short by our standards.Although this table illustrates di�culties with the Borland-C allocater, it isnot unusual for other C runtime libraries to display such behaviour. In a betterbehaved implementation, we would preallocate memory based on string length.In the rest of this report, we have selected experiments in which the GSS's nevergrow large enough to trigger this behaviour.The �rst table below shows the size of the GSS generated by each of thealgorithms. We note that the numbers are the same for each algorithm. Thesecond and third tables show the amount of e�ort involved in constructing theGSS in terms of the number of times each node and edge is visited. We listthe number of nodes visited 0 times (those which are constructed but not visitedagain) and those visited 1 and more times. For the C grammar these numbers arethe same for both algorithms because the ANSI-C grammar does not contain anynullable non-terminals, but for our other examples we shall see that the numberof visits is lower for the GRMLR algorithm.Size of the GSSlevels state nodes shift nodes reduce nodes edgesAlgthm1e 4292 28323 4496 23962 56935GRMLR 4292 28323 4496 23962 56935Node visit countsvisits 0 1 2 3 4 5 6 7 8 9 10no. nodesAlgthm1e 24112 30026 606 266 126 128 171 90 32 98 56no. nodesGRMLR 24112 30026 606 266 126 128 171 90 32 98 56visits 11 12 13 14 15 16 17 18 19 20 21 22 23no. nodesAlgthm1e 56 40 34 3 13 36 41 89 234 170 61 199 40no. nodesGRMLR 56 40 34 3 13 36 41 89 234 170 61 199 40visits 24 25 26 27 28 29 31 32 33 34 35 36 42 44no. nodesAlgthm1e 24 1 1 9 8 3 1 1 1 1 1 1 2 1no. nodesGRMLR 24 1 1 9 8 3 1 1 1 1 1 1 2 1Edge visit countsvisits 0 1 2no. edges Algthm1e 383 55987 566no. edges GRMLR 383 55987 566

Experimental results 66Experiment 2: PascalAim: Parse the source code for the str21 string preprocessor [Joh91] using theISO-standard Pascal grammar. The grammar is modi�ed to allow some BorlandTurbo-Pascal extensions, and converted from EBNF to BNF using the ebnf2bnftool which is part of the gtb toolset.Preparation:1. Convert pascal.bnf from the RDP v1.5 distribution to BNF using the ebnf2bnftool. ebnf2bnf pascal.bnf -opascal.gtb2. Remove empty production comment ::= . from pascal.gtb.3. Produce `lexicalised' source by running the RDP Pascal syntax checker with-L option. Note that this step removes comments.pascal -L str21.pas >str21.strleaving 267 lines, 1829 tokens average of 6.85 tokens per line.4. Create P tomita.gtb and P null.gtb each with ten calls to the tomita 1 andtomita 1 nullable accepts parsers respectively.Experimental runs:gtb -T70000 P_tomita.gtblr(1) parse table requires 258075 cells: 6 cells have conflictsgtb -T70000 P_null.gtblr(1) parse table requires 258075 cells: 1123 cells have conflictsThe run times are 0.39s in each case since the GSS is not large enough to triggernon-linearity in the memory allocation system.Size of the GSSlevels state nodes shift nodes reduce nodes edgesAlgthm1e 1830 9171 1861 7373 18469GRMLR 1830 9171 1861 7373 18469Node visit countsvisits 0 1 2 3 4 5 6 7 8 9no. nodesAlgthm1e 4834 12134 455 278 188 64 68 195 149 30no. nodesGRMLR 9538 7468 418 277 188 64 69 194 149 30visits 10 13 14 15 20 24 25 26 27 totalno. nodesAlgthm1e 1 2 2 1 2 0 1 0 2 18383no. nodesGRMLR 1 2 2 1 2 1 0 1 1 13637

Experimental results 67Edge visit countsvisits 0 1 2 4 13 14no. edges Algthm1e 219 18169 76 2 2 2no. edges GRMLR 4959 13435 70 2 2 2Note the increase in conicts as a result of adding right-nullable accept states.It turns out that the Pascal grammar has many more right-nullable rules thanthe C grammar. These rules exist because it is legal to have declarations whichcan optionally be followed by an assignment, const declarations which are onlyoptionally followed by an actual declaration, etc. These do not generate right-nullable rules in the C grammar because in C the semi-colon is a statementterminator and thus is included at the end of such rules, while in Pascal semi-colon is a statement separator, so it is included higher up in the grammar.The GRMLR algorithm displays 13637 node visits compared to the 18383node visits for Algorithm 1e.Experiment 3: A right nullable grammarAim: To compare the Algorithm 1e and GRMLR algorithm generated graphstructured stacks on a grammar with a large proportion of ambiguity and rightnullability. Tests run on strings of lengths 1 to 4.S ::= aAAA j �A ::= a j � input strings : a; aa; aaa; aaaagtb -T70000 P_tomita.gtblr(1) parse table requires 56 cells: 2 cells have conflictsgtb -T70000 P_null.gtblr(1) parse table requires 56 cells: 6 cells have conflictsSize of the GSSstring levels state nodes shift nodes reduce nodes edgesAlgthm1e a 2 6 1 4 10GRMLR a 2 6 1 4 10Algthm1e aa 3 10 3 8 23GRMLR aa 3 10 3 8 23Algthm1e aaa 4 13 5 9 29GRMLR aaa 4 13 5 9 29Algthm1e aaaa 5 14 6 8 29GRMLR aaaa 5 14 6 8 29

Experimental results 68Node visit countsa aa aaa aaaavisits 0 1 0 1 2 3 4 0 1 2 3 4 0 1 2no. nodesAlgthm1e 3 8 5 10 2 3 1 10 10 3 3 1 16 9 3no. nodesGRMLR 9 2 9 6 2 3 1 12 8 3 3 1 16 9 3Edge visit counts a aa aaa aaaavisits 0 1 0 1 2 3 0 1 2 3 0 1no. edges Algthm1e 2 8 2 17 2 2 6 19 2 2 14 15no. edges GRMLR 8 2 6 13 2 2 8 17 2 2 14 15Note, there is no ambiguity for the string of length 4, the number of node visitshas signi�cantly reduced and the two algorithms perform the same number ofvisits. For the other three strings the total number of (non-zero) node visits isless for the GRMLR algorithm than for Algorithm 1e.Experiment 4: A right recursive grammarAim: To compare the Algorithm 1e generated and GRMLR algorithm generatedgraph structured stacks on a grammar with hidden right recursion and a highproportion of ambiguity. Tests run on strings of lengths 1 to 8.S ::= aSAAA j �A ::= a j � input strings : a; aa; :::; aaaaaaaagtb -T70000 P_tomita.gtblr(1) parse table requires 98 cells: 7 cells have conflictsgtb -T70000 P_null.gtblr(1) parse table requires 98 cells: 16 cells have conflictsFor this example, for each input string we shall just give the sizes of the GSS's,to show that they are identical for both algorithms, and the total numbers ofedge visits, to show that these are lower for the GRMLR algorithm than forAlgorithm 1e.

Experimental results 69Size of the GSSstring levels state nodes shift nodes reduce nodes edgesAlgthm1e a 2 7 1 5 12GRMLR a 2 7 1 5 12Algthm1e a2 3 17 4 15 39GRMLR a2 3 17 4 15 39Algthm1e a3 4 27 7 28 75GRMLR a3 4 27 7 28 75Algthm1e a4 5 37 10 42 113GRMLR a4 5 37 10 42 113Algthm1e a5 6 47 13 57 153GRMLR a5 6 47 13 57 153Algthm1e a6 7 57 16 73 195GRMLR a6 7 57 16 73 195Algthm1e a7 8 67 19 90 239GRMLR a7 8 67 19 90 239Algthm1e a8 9 77 22 108 285GRMLR a8 9 77 22 108 285Node visit counts a a2 a3 a4 a5 a6 a7 a8total node visitsAlgthm1e 10 43 103 181 287 425 595 797total node visitsGRMLR 2 35 91 169 275 413 583 785Experiment 5: A grammar on which Algorithm 1e may breakAim: To construct a non-hidden-right-recursive grammar on which Algorithm 1eincorrectly rejects some strings if the frontier nodes are processed in a certainorder, and to show that the GRMLR algorithm correctly accepts such strings.S ::= aDad j BDabD ::= aABA ::= aBB j �B ::= � input string : aaabgtb -T70000 P_tomita.gtblr(1) parse table requires 176 cells: 2 cells have conflictsTomita 1 parse : 'a a a b'Rejectgtb -T70000 P_null.gtblr(1) parse table requires 176 cells: 5 cells have conflicts

Experimental results 70Tomita 1 parse with nullable accepts: 'a a a b'AcceptIn this example, Algorithm 1e rejects the input string aaab, whereas it is acceptedby the GRMLR algorithm. For completeness we have given the statistics on thesizes of the GSS and the number of node visits, but of course the numbers forthe Algorithm 1e generated GSS are not particularly interesting because it doesnot complete the parse.Size of the GSSlevels state nodes shift nodes reduce nodes edgesAlgthm1e 4 17 7 10 34GRMLR 5 21 9 12 42Node visit countsvisits 0 1 2 3 totalno. nodesAlgthm1e 17 16 1 0 18no. nodesGRMLR 28 11 2 1 18Note that the node numbers in the Algorithm 1e GSS are lower than for theGRMLR algorithm in this case because Algorithm 1e does complete the GSSconstruction.Experiment 6: A grammar on which Algorithm 1e always breaksAim: To construct a grammar on which Algorithm 1e incorrectly rejects somestrings no matter what order the frontier nodes are processed in, and to showthat the GRMLR algorithm correctly accepts such strings.S ::= bAA ::= aAB j �B ::= � input string : baagtb -T70000 P_tomita.gtblr(1) parse table requires 63 cells: 0 cells have conflictsTomita 1 parse : 'b a a'Rejectgtb -T70000 P_null.gtblr(1) parse table requires 63 cells: 3 cells have conflictsTomita 1 parse with nullable accepts: 'b a a'AcceptAgain in this example, Algorithm 1e rejects the input string baa, whereas it isaccepted by the GRMLR algorithm.

REFERENCES 71Size of the GSSlevels state nodes shift nodes reduce nodes edgesAlgthm1e 4 6 3 3 12GRMLR 4 8 3 5 16Node visit countsvisits 0 1 2 totalno. nodesAlgthm1e 6 6 0 6no. nodesGRMLR 8 6 2 10References[AH99] John Aycock and Nigel Horspool. Faster generalised LR parsing. InCompiler Construction: 8th International Conference, CC'99, volume1575 of Lecture Notes in computer science, pages 32 { 46. Springer-Verlag, 1999.[Joh91] Adrian Johnstone. string21 { a string prepreprocessor for asm21. Tech-nical Report CSD{TR{91{8, Royal Holloway, University of London,Computer Science Department, 1991.[Joh93] Adrian Johnstone. bool { a boolean function minimiser. Technical Re-port CSD{TR{93{25, Royal Holloway, University of London, ComputerScience Department, 1993.[KR88] Brian W. Kernighan and Dennis M Ritchie. The C programming lan-guage, second edition. Prentice Hall, 1988.[Lan74] Bernard Lang. Deterministic techniques for e�cient non-deterministicparsers. In Automata, Lanugages and Programming: 2nd Colloquium,Lecture Notes in computer science, pages 255 { 269. Springer-Verlag,1974.[NF91] Rahman Nozohoor-Farshi. GLR parsing for �-grammars. In MasaruTomita, editor, Generalized LR parsing, pages 61{75. Kluwer AcademicPublishers, Netherlands, 1991.[NS96] Mark-Jan Nederhof and Janos J. Sarbo. Increasing the applicability ofLR parsing. In H.Bunt and M. Tomita, editors, Recent advances in pars-ing technology, pages 35{57. Kluwer Academic Publishers, Netherlands,1996.[Rek92] Jan G. Rekers. Parser generation for interactive environments. PhDthesis, Universty of Amsterdam, 1992.[Tom86] Masaru Tomita. E�cient parsing for natural language. Kluwer Aca-demic Publishers, Boston, 1986.

