
Uppsala Master's Theses in Computing Science
Examensarbete 179
2001-01-19
ISSN 1100-1836

Binary Space Partioning Trees and Polygon
Removal in Real Time 3D Rendering

Samuel Ranta-Eskola

Information Technology
Computing Science Department

Uppsala University
Box 311

S-751 05 Uppsala
Sweden

Supervisor: Erik Olofsson

Examiner:
Passed:

BSP-TREES AND POLYGON
REMOVAL IN REAL TIME 3D

RENDERING

By Samuel Ranta-Eskola

Uppsala University

Abstract

When the original design of the algorithm for Binary Space Partitioning
(BSP)-trees was formulated the idea was to use it to sort the polygons in the
world. The reason for this was there did not exist hardware accelerated Z-
buffers, and software Z-buffering was too slow. Today that area of usage is
obsolete, since hardware accelerated Z-buffers exist. Instead the usage is to
optimise a wide variety of areas, such as radiosity calculations, drawing of the
world, collision detection and networking.

We set out to examine the areas where one can draw advantages of the
structure supplied and study the generating process.

As conclusion a BSP-tree is a very useful structure in most game engines.
Although there are some drawbacks with it, such as that it is static and it is
very expensive to modify during run-time. Hopefully some ideas can be taken
from the BSP-tree algorithm to develop a more dynamic structure that has
the same advantages as the BSP-tree.

TABLE OF CONTENTS

Number Page

1. Introduction ..1

• Background..1

• Problem Statement ...1

2. BSP-Trees ...3

• Background..3

• The BSP algorithm ...4

o CLASSIFY-POINT ..4

o POLYGON-INFRONT ..5
o IS-CONVEX-SET ..5

o CALCULATE-SIDE...7

o CHOOSE-DIVIDING-POLYGON ..8

o GENERATE-BSP-TREE..11

• Drawing the BSP-tree...15
o DRAW-BSP-TREE ..15

3. Hidden Surface Removal ..16

• Background..16

• Portal Rendering ...17
o INSIDE-FRUSTUM...19

o RENDER-PORTAL-ENGINE...19

• Placing the Portals ..20

o CLIP-POLYGON ...21

o PLACE-PORTALS...22

• Our Solution..26

• Calculating the PVS ..26

 ii

o DISTRIBUTE-SAMPLE-POINTS..28

o RAY-INTERSECTS-SOMETHING-IN-TREE.........................30

o CHECK-VISIBILITY..31

o TRACE-VISIBILITY..32

• Static Objects...33

o PUSH-POLYGON...33

4. Radiosity ..35

• Background..35

• Radiosity in BSP-trees ..36

o RADIOSITY ..37

5. Summary of BSP-Tree Rendering ...39

• RENDER-SCENE...39

6. Physics In BSP-Trees ...41

• Future Position Calculation ...33

• Collision Detection and Collision Handling......................................44

o CALCULATE-COLLISIONRADIUS ..47

o PRE-CHECK-COLLISION ...48

o GET-COLLIDING-POLYGON...52

o OBJECTS-COLLIDE ..53

o GET-COLLIDING-POLYGON (RE-WRITTEN)55

o COLLISION-HANDLING..57

7. Network Optimization Using BSP-Trees ..59

8. Future Work..60

9. Conclusions ...61

10. Appendix ...63

 iii

LIST OF FIGURES

Figure Page
Cyclic overlap 3
The difference between a convex set and a non-convex set. 4
The non-symmetric nature of the comparison POLYGON-INFRONT 5
Splitting a polygon 7
Problems when choosing dividing polygon. 10
Example structure 12
The result of a split at polygon 16 13
The second step. 14
The final tree. 14
View frustum clipping 17
Culling of objects 18
Removing coinciding parts. 23
An example map for automatic portal placement. 24
Visibility between nodes. 26
Sample of Radiosity. 38
A human encapsulated in an ellipsoid. 41
Prohibited and allowed move. 42
Object move. 45
Incorrect collision. 45
Correct collision 45
Side value. 46
Collision radius. 47
Testing if a object passes through a polygon. 49
Perpendicular planes for a triangle. 49
Moved perpendicular planes. 50
The effective collision area of a triangle. 51
The correct collision area of a triangle. 51

 iv

Acknowledgments

The author wishes to thank Andreas Brinck for giving essential help that was
needed to get started. Erik Olofsson at O3games was also an invaluable asset
when it came to feedback and helping to solve difficult problems along the
way.

 v

GLOSSARY

FPS First person shooter, a game viewed in first person perspective, where
the goal is to eliminate the opponents.

Map An object that contains the geometry of the world.

BSP-tree Binary Space Partioning tree, a tree structure used to divide a map
into smaller parts.

Z-Value This is a measurement used to classify how close a polygon is to the
viewer’s position.

Frame rate The number of times the screen is updated per second. This has
nothing to do with the refresh rate of the monitor. It is the number of times
the world is drawn per second. Usually this should be above 30 times/sec to
give a continuous feeling.

Pre-processing Calculations that are done before run-time, thus saving
valuable CPU time at run time that can be used for other things.

Polygon A polygon is a many-sided planar figure composed of vertices and
edges. Triangles, squares, hexagons, and pentagons are examples of polygons
that have names, but any closed series of line segments forms a polygon.
[Unknown Author, Basic Math FAQ]. To be meaningful in this area of usage
all vertices must be on the same plane, i.e. 2-dimensional.

Plane equation The mathematic formula for a 3 dimensional plane.
Ax+By+Cz+D, where A-D is the constant coefficients of the equation, A-C
is the normal of the plane and D is the distance from origin in the direction of
the normal to the plane.

Node A part of a tree. Each node consists of a left- and a right sub tree.

PVS Potentially Visible Set; given a position this is the set of
objects/polygons/nodes that are potentially visible from that location.

Portal A hole through which two nodes are connected or a mirror on which a
scene can be rendered.

Radiosity A lightning model commonly used in game engines. Main feature
is so called color bleeding, where walls “bleed” its color to neighbor walls.

 vi

Avatar An object that represents a player in the virtual world.

Client A user that is connected to a server in a multiplayer application.

Viewing frustum The field of view for the camera. Often shaped as a
pyramid with the top in the camera.

Target system The minimum system that a game should be able to run on.

Scene A set of objects with attribute from which one can render an image
from any viewing position and angle.

LOD Level of Detail, when this technique is used objects is drawn with
different amount of detail depending on distance from the viewer. The reason
is to reduce the polygon count in the scene. The closer an object is to the
viewer the more detailed it will be.

Bounding box Generally this is defined as the least box that encapsulates
some set of objects, for example points, polygons, other bounding boxes etc.
When we use the term as the bounding box of a BSP-node, we mean that this
is the least box that encapsulates all polygons in the sub trees of this node.

1

C h a p t e r 1

INTRODUCTION

Background

Binary Space Partioning (BSP)-trees were first described in 1969 by Shumacker et al.1, it
was hardly meant to be an algorithm used to develop entertainment products, but since
the beginning of the 90’s BSP-trees have been used in the gaming industry to improve
performance and make it possible to use more details in the maps2. The first game ever to
use the technology is Doom, created by John Carmack and John Romero, two legends in
the gaming industry.3 Since then almost all First Person Shooting (FPS4) games have been
using that technique.

Problem Statement

Because of the tough competition in the gaming industry a lot of work has been done to
improve the original design of the algorithm, but we believe improvements can be done.
Our main focus has been on moving costly calculations from run time to pre processing
time, thus building a structure that holds a lot of information that can be used during run
time. Another thing we wish to do with our work is to find ways to improve and
optimize surrounding areas in a gaming engine using the strengths of BSP-trees. As a side
effect this report can also be considered as a tutorial on how to develop a gaming engine.

In this report we are going to show:

• What a BSP-tree is.

• How to create a BSP-tree.

• Advantages / Disadvantages.

• Similar techniques that can be used.

• The usability of BSP-trees.

1 [Shumacker, R., Brand, R., Gilliland, M., Sharp, W. Study for Applying Computer-Generated Images to Visual Simulation]

2 See the glossary for description.

3 [http://www.idsoftware.com/corporate/index.html]

4 See the glossary for description.

 2

• Compare our methods with existing methods.

The research for this thesis has been done at a company called O3games
[http://www.o3games.com], which is a Swedish game developer. The results is used in a
product released by Cloop Systems, a sister company. We have implemented a fully
working BSP-tree with all the surrounding benefits, i.e. the areas where one can use the
strengths of a BSP-tree. To support our discussion we are going to use examples from
the code we have written. We will use pseudo-code similar to C++, when it is not clear
we will analyze the complexity of the algorithm in order to shed light on where
optimizations have been done. Most of our graphical examples are illustrated in 2D, but
they would work just as well in 3D. Throughout the report the author will assume that
the reader have some knowledge about basic concepts in 3D-math and vector algebra.

 3

C h a p t e r 2

BSP-TREES

Background

A Binary Space Partitioning-tree is a structure that, as the name suggests, subdivides the
space into smaller sets. These days, given hardware accelerated Z-buffers; the benefit of
this is that one has a smaller amount of data to consider given a location in space. But in
the beginning of the 90’s the main reason BSP-trees were being used was that they sorted
the polygons in the scene so that you always drew back-to-front, meaning that the
polygon with the lowest Z-value5 was drawn last. There are other ways to sort the
polygons so that the closest polygon is drawn last, for example the Painter’s algorithm6,
but few are as cheap as BSP-trees, because the sorting of the polygons is done during the
pre-processing7 of the map and not under run- time. The algorithm for generating a BSP-
tree is actually an extension of Painter’s algorithm.8 Just as the original design of the BSP
algorithm, the Painter’s algorithm works by drawing the polygons in the scene in back-to-
front order. However, there are some major drawbacks with Painter’s algorithm:

• Polygons will not be drawn correctly if they pass through any other polygon.
• It is difficult and computationally expensive to calculate the order that the

polygons should be drawn in for each frame.
• The algorithm cannot handle cases of cyclic overlap as shown in the figure below.

Figure 1. Cyclic overlap9

5 See the glossary for description.

6 [Sobey, Anthony. Software Engineering and Sunsted, Tod. 3D computer graphics: Moving from wire-frame drawings to solid, shaded
models]

7 See glossary for description.

8 [Feldman, Mark. Introduction to Binary Space Partioning Trees, 1997]

9 [Feldman, Mark. Introduction to Binary Space Partioning Trees, 1997]

 4

The BSP algorithm

The original idea for the creation of a BSP-tree is that you take a set of polygons that is
part of a scene and divide them into smaller sets, where each subset is a convex set of
polygons. That is that each polygon in this subset is in front of every other polygon in the
same set. Polygon 1 is in front of polygon 2 if each vertex in polygon 1 is on the positive
side of the plane polygon 2 defines or in that plane that. A cube made of inward facing
polygons is a convex set, whilst a cube made of outwards facing polygons is not.

Figure 2. The difference between a convex set and a non-
convex set.

The functions needed to determine whether a set of polygons is a convex set would look
like this:

w CLASSIFY-POINT
w Indata:
w Polygon – The polygon to classify the point versus.
w Point - 3D-point to classify versus the plane defined
w by the polygon.
w Outdata:
w Which side the point is of the polygon.
w Effect:
w Determines on which side of the plane defined by the polygon the
w point is located.

CLASSIFY-POINT (Polygon, Point)
1 SideValue f Polygon.Normal * Point
2 if (SideValue = Polygon.Distance)
3 then return COINCIDING
4 else if (SideValue < Polygon.Distance)
5 then return BEHIND
6 else return INFRONT

 5

w POLYGON-INFRONT
w Indata:
w Polygon1 – The polygon to determine whether the other polygon is
w in front of or not
w Polygon2 – The polygon to check if it is in front of the first
w polygon or not
w Outdata:
w Whether the second is in front of the first polygon or not.
w Effect:
w Checks each point in the second polygon is in front of
w the first polygon. If so is the case it is considered
w to be in the front of it.

POLYGON-INFRONT (Polygon1, Polygon2)
1 for each point p in Polygon2
2 if (CLASSIFY-POINT (Polygon1, p) <> INFRONT)
3 then return false
4 return true

w IS-CONVEX-SET
w Indata:
w PolygonSet – The set of polygons to check for convexity
w Outdata:
w Whether the set is convex or not
w Effect:
w Checks each polygon against each other polygon, to see if they are
w in front of each other, if any two polygons doesn’t fulfill that
w criteria the set isn’t convex.

IS-CONVEX-SET (PolygonSet)
1 for i f 0 to PolygonSet.Length ()
2 for j f 0 to PolygonSet.Length ()
3 if(i <> j && not POLYGON-INFRONT(PolygonSet[i], PolygonSet[j]))
4 then return false
5 return true

The function POLYGON-INFRONT is a non-symmetric comparison, meaning that if
Polygon2 is in front of Polygon1 it does not necessarily imply that Polygon1 is in front of
Polygon2. This can easily be shown with the following example:

Figure 3. The non-symmetric nature of the comparison
POLYGON-INFRONT

 6

In Figure 3 Polygon1 is in front of Polygon2 since both p3 and p4 is on the positive side
of Polygon2, but Polygon2 is not in front of Polygon1 since p2 is behind Polygon1.

The idea can be slightly modified as the need of convex sets is not as acute when you can
use hardware accelerated Z-buffers. Later in this chapter it will be described how this was
solved.

The structures needed for a BSP-tree can be defined as follows:

class BSPTree
{
 BSPTreeNode RootNode w The root node of the tree.
}

class BSPTreeNode
{
 BSPTree Tree w The tree this node belongs to.
 BSPTreePolygon Divider w The polygon that lies in middle
 w of the two sub trees.
 BSPTreeNode *RightChild w The right sub tree of this node.
 BSPTreeNode *LeftChild w The left sub tree of this node.
 BSPTreePolygon PolygonSet[] w The set of polygons in this node.
}

class BSPTreePolygon
{
 3DVector Point1 w Vertex 1 in the polygon.
 3DVector Point3 w Vertex 2 in the polygon.
 3DVector Point3 w Vertex 3 in the polygon.
}

As you can see each polygon is represented by only three points. This is because the
hardware in graphic cards is designed to draw triangles. But the algorithm for generating
BSP-trees is designed to take care of polygons with any number of points, as long as all
points are in the same plane.

There are several ways to split up the set of polygons into smaller subsets. For example,
you can choose an arbitrary plane in space and divide the polygons by putting the ones
on the positive side of the plane in the right sub tree and the polygons on the negative
side in the left sub tree. The problem with this approach is that it is very difficult to find a
plane that divides the polygons into two approximately equally sized sets, since there are
an infinite set of planes in space. So the most common way to do this is by taking one of
the polygons in the scene and dividing the polygons according to the plane that polygon
defines.

We have defined an algorithm, POLYGON-INFRONT, which can classify whether a polygon
is on the positive side of another polygon. Now we need to modify that algorithm to be
able to also determine whether the polygon is spanning the plane defined by the other
polygon. The algorithm is defined as follows:

 7

w CALCULATE-SIDE
w Indata :
w Polygon1 – The polygon to classify the other polygon against
w Polygon2 – The polygon to classify
w Outdata :
w Which side of polygon1 polygon 2 is located on.
w Effect:
w Classifies each point in the second polygon versus the
w first polygon. If there are points on the positive side but no
w points on the negative side, Polygon2 is considered to be in front
w of Polygon1. If there are points on the negative side but no
w points on the positive side, Polygon2 is considered to be behind
w Polygon1. If all points are coinciding polygon2 is considered to
w be coinciding with Polygon1. The last possible case is that there
w are points on both the positive and the negative side, then
w polygon2 is considered to be spanning Polygon1.

CALCULATE-SIDE (Polygon1, Polygon2)
1 NumPositive f 0, NumNegative f 0
2 for each point p in Polygon2
3 if (CLASSIFY-POINT (Polygon1, p) = INFRONT)
4 then NumPositive = NumPositive + 1
5 if (CLASSIFY-POINT (Polygon1, p) = BEHIND)
6 then NumNegative = NumNegative + 1
7 if (NumPositive > 0 && NumNegative = 0)
8 then return INFRONT
9 else if(NumPositive = 0 && NumNegative > 0)
10 then return BEHIND
11 else if(NumPositive = 0 && NumNegative = 0)
12 then return COINCIDING
13 else return SPANNING

This gives us a problem when it comes to determining which subset a polygon that is
spanning the plane should be placed in. The algorithm deals with this by splitting such a
polygon into two polygons. This also solves two of the problems in Painter’s algorithm,
namely cyclic overlap and intersecting polygons. Below is example of how a polygon is
splitted:

Figure 4. Splitting a polygon

In the figure above Polygon1 is the classifying polygon and Polygon2 is the polygon that
is classified. Since Polygon2 is spanning the plane defined by Polygon1 it has to be
splitted. The result is the picture to the right. Polygon2 is now completely in front of

 8

Polygon1 and Polygon3 is completely behind. The glitch between Polygon2 and
Polygon3 is just there to illustrate that it is two separate polygons, after a split the two
resulting polygons will be adjacent to each other.

When a BSP-tree is created, one has to decide whether the need is of a balanced tree,
meaning that there should not be too big a difference in depth between the left and the
right sub tree of each node, or try to limit the number of splits, since each split creates
new polygons. If too many new polygons is created during the BSP-tree creation the
graphic card will have a hard time rendering the map, thus reducing the frame rate, while
a unbalanced tree will require more expensive traversal of the tree. We decided to accept
a certain number of splits in order to get a more balanced tree. But the main concern was
reducing the number of new polygons created. Below is our loop for choosing the best
dividing polygon from a set of polygons:

w CHOOSE-DIVIDING-POLYGON
w Indata:
w PolygonSet – The set of polygons to search for the best dividing
w polygon.
w Outdata:
w The best dividing polygon
w Effect:
w Searches through the set of polygons and returns the polygons that
w splits the set into the two best resulting sets. If the set is
w convex no polygon can be returned.

CHOOSE-DIVIDING-POLYGON (PolygonSet)
1 if (IS-CONVEX-SET (PolygonSet))
2 then return NOPOLYGON
3 MinRelation f MINIMUMRELATION
4 BestPolygon f NOPOLYGON
5 LeastSplits f INFINITY
6 BestRelation f 0

w Loop to find the polygon that best divides the set.
7 while(BestPolygon = NOPOLYGON)
8 for each polygon P1 in PolygonSet
9 if (Polygon P1 has not been used as divider previously
 during the creation of the tree)

w Count the number of polygons on the positive side, negative side
w of and spanning the plane defined by the current polygon.
10 NumPositive f 0, NumNegative f 0, NumSpanning f 0
11 for each polygon P2 in PolygonSet except P1
12 Value = CALCULATE-SIDE(P1, P2)
13 if(Value = INFRONT)
14 NumPositive = NumPositive + 1
15 else if(Value = BEHIND)
16 NumNegative = NumNegative + 1
17 else if(Value = SPANNING)
18 NumSpanning = NumSpanning + 1

 9

w Calculate the relation between the number of polygons in the two
w sets divided by the current polygon.
19 if (NumPositive < NumNegative)
20 Relation = NumPositive / NumNegative
21 else
22 Relation = NumNegative / NumPositive

w Compare the results given by the current polygon to the best this
w far. If the this polygon splits fewer polygons and the relation
w between the resulting sets is acceptable this is the new candidate
w polygon. If the current polygon splits the same amount of polygons
w as the best polygon this far and the relation between the two
w resulting sets is better -> this polygon is the new candidate
w polygon.
23 if (Relation > MinRelation &&
 (NumSpanning < LeastSplits ||
 (NumSpanning = LeastSplits &&
 Relation > BestRelation))
24 BestPolygon f P1
25 LeastSplits f NumSpanning
26 BestRelation f Relation

w Decrease the number least acceptable relation by dividing it with
w a predefined constant.
27 MinRelation f MinRelation / MINRELATIONSCALE
28 return BestPolygon

Complexity analysis:
Because of the while loop it is very hard to find a bound to this function. Depending of
the structure of the scene the while loop might loop for a very long time. The
MINRELATIONSCALE is what decides how much the acceptable relation decreases per
iteration, thus how long it will take before the minimum relation will be small enough to
accept the best possible solution. The worst case is that we have a set consisting of n
polygons that is not a convex set and the best possible solution is a dividing polygon that
splits the set into one part consisting of n-1 polygons and another set consisting of 1
polygon. This solution will only be acceptable when the minimal acceptable relation is
less than 1/(n-1) (see line 19-23 in the algorithm). Meaning that MinRelation /
MINRELATIONSCALEi < 1/(n-1) where i is the number of iterations in the loop, this is
due the division by MINRELATIONSCALE at line 27 in the algorithm. Let’s assume that the
initial value for MinRelation is 1, which is the highest possible value since the relation is
always between 0 and 1 (see lines 19-22 in the algorithm). We have:

1 / MINRELATIONSCALEi < 1/(n-1)
1 < MINRELATIONSCALEi/(n-1)
(n-1) < MINRELATIONSCALEi
logMINRELATIONSCALE (n-1) < i

This is no upper bound for i, but since i will be very close to logMINRELATIONSCALE (n-1) we
will, for simplicity assume they are equal. Another practical assumption to make is that
MINRELATIONSCALE always should be greater than or equal to 2. Thus giving us:

 10

logMINRELATIONSCALE (n-1) = i MINRELATIONSCALE >= 2
i = logMINRELATIONSCALE (n-1) < lg(n-1) = O(lg n)

Inside the while loop, there are two iterations over the set of polygons. Giving us that the
worst case behavior of this algorithm is of order O(n2 lg n), but the typical behavior is
almost always closer to O(n2) as there tend to exist a polygon that will fulfill the
requirements in the first iteration.

The loop in CHOOSE-DIVIDING-POLYGON might look as if there are cases where it will
not terminate, but this is not true since if the set of polygons is a non-convex set there is
always one polygon that can divide the polygons into two sets. CHOOSE-DIVIDING-
POLYGON selects the polygon that splits the least number of polygons. To prevent from
choosing polygons that would not divide the set, the relation between the sizes of the
two resulting sets must be better than a threshold value. To better illustrate this we show
an example where choosing the polygon that splits the fewest amount of polygons would
render in an infinite loop:

Figure 5. Problems when choosing dividing polygon.

In the above example choosing either polygon 1,6,7 or 8 would not render in the split of
any polygon, but on the other hand each of the polygons in the set is on the positive side
of those polygons, so in the next loop the same polygon would be chosen again,
rendering in a infinite loop. As a matter of fact 1,2,3 and 4 is on the border of the least
convex hull that can hold the polygon set, polygons for which this is true cannot be used
as a dividing polygon since all other polygons in the set is on the positive side of them.
Choosing polygon 2,3,4 or 5 would each cause one split but it would also divide the set
into two smaller sets.

Another reason why a it is not always good to choose the polygon that splits the fewest
polygons is that in most cases that heuristic will render in a unbalanced set. A balanced
tree will perform better during runtime than an unbalanced one.

When the best polygon has been chosen the rest of the polygons is divided according to
that polygon. There are two ways to do deal with the dividing polygon:

 11

1. A leafy tree can be created, meaning that all polygons are put into the leaf nodes,
thus the dividing polygons have to be categorized to be on one of the sides. In
our example we count the polygons in the same plane as the dividing polygon as
being on the positive side of the plane.

2. The other way is to store the dividing polygons in the internal nodes. This process
is repeated for each sub tree until each leaf contains a convex set of polygons.

The algorithm for generating a leafy BSP-tree looks like this:

w GENERATE-BSP-TREE
w Indata:
w Node – The sub tree to build of the type BSPTreeNode.
w PolygonSet – The set of polygons to create a BSP-tree from.
w Outdata:
w A BSP-tree stored in the incoming node.
w Effect:
w Generates a BSP-tree out of a set of polygons.

GENERATE-BSP-TREE (Node, PolygonSet)
1 if (IS-CONVEX-SET (PolygonSet))
2 Tree f BSPTreeNode (PolygonSet)
3 Divider f CHOOSE-DIVIDING-POLYGON (PolygonSet)
4 PositiveSet f {}
5 NegativeSet f {}
6 for each polygon P1 in PolygonSet
7 Value f CALCULATE-SIDE (Divider, P1)
8 if(Value = INFRONT)
9 PositiveSet f PositiveSet U P1
10 else if (Value = BEHIND)
11 NegativeSet f NegativeSet U P1
12 else if (Value = SPANNING)
13 Split_Polygon10 (P1, Divider, Front, Back)
14 PositiveSet f PositiveSet U Front
15 NegativeSet f NegativeSet U Back
16 GENERATE-BSP-TREE (Tree.RightChild, PositiveSet)
17 GENERATE-BSP-TREE (Tree.LeftChild, NegativeSet)

Complexity analysis:
The call to CHOOSE-DIVIDING-POLYGON is of order O(n2 lg n), which dominates the rest
of the function except for the recursive calls. If we assume that the division of the
polygon set is fairly even we can formulate the following function to calculate the bounds
of GENERATE-BSP-TREE:
T(n) = 2T(n/2) + O(n2 lg n)

Using Masters Theorem11 we get that the order of complexity is Θ (n2 lg n), where n is
the number of polygons in the incoming set.

10 [Silicon Graphics. BSP Tree Frequently Asked Questions (FAQ)]

 12

Following there is an example of how a BSP-tree is generated. The structure below is the
original set of polygons, we have numbered them to make the example easier to follow.
This set of polygons is going to be divided into a BSP-tree.

Figure 6. Example structure

To be able to run the algorithm we must choose a couple of constants, namely:
MINIMUMRELATION and MINRELATIONSCALE. We found that choosing
MINIMUMRELATION = 0.8 and MINRELATIONSCALE = 2 will give quite good result,
but one can experiment we those numbers. The higher the MINIMUMRELATION is the
better balanced the tree will be, but the number of splitted polygons will probably
increase too.

The starting set of polygons is obviously not a convex set, so a dividing polygon will be
chosen. After a quick glance at the structure we can see that polygons {1,2,6,22,28}
cannot be used as dividing polygons since they define convex hull that contains the
whole set of polygons. But all the other polygons are candidates for being dividing
polygon. The polygons that split the fewest number of polygons and give the best
relation between the sizes of the two resulting sets are 16 and 17, they lie on the same line
and do not split any other polygon. The two resulting sets is almost equally sized namely
|negative|= 15 and |positive| = 13 polygons in each of the resulting sets. Let us choose
polygon 16 as the divider. The result will look as follows:

11 [Cormen, Thomas H. Leiserson, Charles E. and Rivest, Ronald L.: Introduction to Algorithms]

 13

Figure 7. The result of a split at polygon 16

Neither the right nor the left sub tree contains a convex set of polygons so a new
dividing polygon must be chosen in both.

In the left sub tree {1,2,6,7} is on the convex hull so they cannot be used as dividers.
Polygon 4 and 10 is on the same line and they do not split any other polygon. The sizes
of the resulting sets is |negative|= 7 and |positive| = 8 which is very balanced. We
choose 4 as the divider.

{16,17,22,23,28} contains the right sub tree, so they will not be dividers. The polygons
that will not split any other polygons are {18,19,27,26} but the sizes of the resulting sets
for all of them will be |negative|= 3 and |positive| = 11, 3/11 is below the minimum
relation(0.5) so we will have to check the other polygons to see if they can provide us
with a more balanced solution. Each of {20,21,24,25} splits exactly one polygon, but the
most balanced set is attained by polygon 21, which after splitting polygon 22 produces
resulting sets of size |negative|= 6 and |positive| = 8.

On the next page the result after these operations is shown.

 14

Figure 8. The second step.

None of the sub trees contain a convex set of polygons so the algorithm will move on in
the same manner; the resulting tree will look like this:

Figure 9. The final tree.

Even though it is not the optimal solution it is quite close to it and it does not take that
long time.

 15

Drawing the BSP-tree

Now that the BSP-tree is created it is very easy to draw the polygons the tree, with zero
chance of failure in the drawing. Below the algorithm of that process is described. We
assume there is a function IS-LEAF that given a BSP-node it returns true if that node is
a leaf otherwise false.

w DRAW-BSP-TREE
w Indata:
w Node – The node to draw.
w Position – The viewer’s position.
w Outdata:
w None
w Effect:
w Draws the polygons contained in the node and its sub trees.

DRAW-BSP-TREE (Node, Position)
1 if (IS-LEAF(Node))
2 DRAW-POLYGONS (Node.PolygonSet)
3 return

w Calculate which sub tree the viewer is in.
4 Side f CLASSIFY-POINT (Node.Divider, Position)

w If the viewer is in the right sub tree draw that tree before the
w left.
5 if (Side = INFRONT || Side = COINCIDING)
6 DRAW-BSP-TREE (Node.RightChild, Position)
7 DRAW-BSP-TREE (Node.LeftChild, Position)

w Otherwise draw the left first.
8 else if(Value = BEHIND)
9 DRAW-BSP-TREE (Node.LeftChild, Position)
10 DRAW-BSP-TREE (Node.RightChild, Position)

This way of drawing gives us no reduction in number of polygons that is drawn to the
screen. Since a map can consist of hundreds of thousands of polygons, it is no good
solution. In some way nodes that are not visible or even polygons that are not visible
should be discarded. This is called hidden surface removal. There are several ways to do
this; we will explain some of them in the next chapter.

Related reading:

[Sunsted, Tod. 3D computer graphics: Moving from wire-frame drawings to solid, shaded models]
[Sobey, Anthony. Software Engineering]
[Southwick, Andrew R. Quake Rendering Tutorial]
[Meanie, Mr.. Binary Space Partitioning Trees]
[Royer, Dan. Dan’s Programming Tutorials]
[Feldman, Mark. Introduction to Binary Space Partioning Trees]

 16

C h a p t e r 3

HIDDEN SURFACE REMOVAL

Background

The need of removing what is not visible has been and always will be extremely high in
the gaming industry, even though graphic cards evolve at gigantic rates and things that
were true a couple years ago are not even remotely true these days. When a game is
created a goal frame rate12 is set. The lowest acceptable rate on a target system13 use to be
around 30 frames/second. A couple of years ago this meant putting out over 5000
textured polygons per frame could be too much. These days there are graphic cards in
the market with the ability to draw hundreds of million of polygons per second during
optimal conditions. Still there is a need of removing hidden parts. Why? Each hidden
polygon that is drawn could be replaced by a polygon that is visible, hence increasing the
detail in the scenes14, making the game visually more attractive. The question is how far
one should go to remove hidden polygons. To remove a hidden part heavy computations
are needed to be done, such as view frustum15 culling and portal16 rendering.17 The CPU-
time used to do these computations could be used to enhance other effects in the game,
such as AI and collision detection. Hence there is a lot to take in to consideration when
developing algorithms for removal of hidden surfaces. There are almost no games that go
so far as to remove each polygon that is hidden. Most games are satisfied with the
removal of whole sets of polygons, such as nodes, objects etc. They do not consider
individual polygons, so it seems like the correct way to go is to accept some overdraw to
limit the computations when removing hidden surfaces.

The most common technique to remove hidden surfaces when creating a FPS is portal
rendering. This technique is very well suited to utilize the benefits of BSP-trees, though
the use of BSP-trees is not necessary. We considered to use this but thought that a more
static representation could give a speedier rendering of the BSP-tree. The portal
rendering has some nice side effects such as mirrors and surveillance cameras that we
cannot do with our technique, but on the other hand, our technique require much less
computations during run-time.

12 See the glossary for definition.

13 See the glossary for definition.

14 See glossary for definition.

15 See the glossary for description.

16 See glossary for description

17 [Hoff III, Kenneth E. Faster 3D Game Graphics by Not Drawing What Is Not Seen]

 17

Portal Rendering

The world can be described as several sectors that are connected to each other through
portals. A sector is a convex and closed set of polygons, where closed means that there is
no way for a line drawn in the sector to get out of the sector without encountering a
polygon.18 This means that each hole in each node must be filled with a portal polygon.
The placement of portal polygons can either be done manually or automatically. As we
described before the need of convex sectors has disappeared with hardware-accelerated
Z-buffers, so many game engines skip that criteria. But we are going to describe how to
do it the old fashioned way.

The basic idea with a portal engine is that when you render a scene from a viewer’s
position with a viewing frustum and encounter a portal polygon, the portal clips the
viewing frustum. Then the adjacent sector is rendered from the same viewer’s position
but with the new viewing frustum. This is a very simple approach and is very well suited
for a recursive function. Many objects that are visible can easily be culled away since the
viewing frustum is limited only to be exactly what you see. Below is a picture of how a
viewing frustum can be clipped in a portal engine:

Figure 10. View frustum clipping

In the figure above the viewer is positioned at V, the original view frustum is F1. When
F1 encounters portal polygon P1 it is clipped and renamed to F2. Later on F2
encounters portals P2 and P3 and is clipped to F3 and F4. When encountering portal P4,
F3 is trimmed to F5 and F4 is trimmed to F6. This process is well suited for a recursive
function.

18 [Tyberghein, Jorrit. The Portal Technique for Real-time 3D Engines].

 18

To cull away an object in a portal-rendering engine, as matter of a fact any 3D-engine,
there are a series of steps that can be done to speed up the process. First, compute a
bounding sphere for that object; a bounding sphere is the smallest sphere that can hold
each vertex in an object. Optimally this is done once and for all during the creation of the
object. Then, that sphere is tested against each plane in the viewing frustum. If it is on
the completely negative side of any one of those planes the object is not visible and is not
drawn. The figure below describes a situation where one object is culled, thus not drawn,
while the other is drawn.

Figure 11. Culling of objects

Object 1 in the figure is on the positive side of the right plane in the view frustum, but it
is on the negative side of the left plane so it is culled. The other object (2), is completely
on the positive side of the left plane while a part of it is on the positive side of the right
plane so it cannot be culled.

The original idea was that portal engines would have zero overdraw by clipping the
polygons so that only the visible area would be drawn. These days this is an awful waste
of processor time. But since a polygon can be encountered several times in the recursive
loop that draws the scene we need to know if a polygon has been drawn or not. A good
way to do this is to tag the polygons with a frame counter which indicates which was the
last frame the polygon was drawn. That is the case for the right wall in figure 4, which
should be drawn in frustum F5 and frustum F6, polygons has to be tagged to tell if they
have been drawn this frame or not. Otherwise there will be Z-buffering errors.

In order to be able to render in portal engine we need to define what a view frustum
consist of. A view frustum is a structure that holds n number of planes, each of these
planes’ normals faces inwards the view frustum, thus enclosing a volume referred to as
inside the frustum. Below there is an algorithm on how to calculate whether a polygon is

 19

inside a frustum or not, in this algorithm we use the function CLASSIFY-POINT as if it
takes a plane and a point as parameters.

w INSIDE-FRUSTUM
w Indata:
w Frustum – The frustum to check whether the polygon is inside or
w not.
w Polygon – The polygon to check.
w Outdata:
w Whether the polygon was inside the frustum or not.
w Effect:
w Checks each point in the polygon versus each plane in the view
w frustum. If any point is on the positive side of all planes the
w polygon is counted as inside.

INSIDE-FRUSTUM (Frustum, Polygon)
1 for each point Pt in Polygon
2 Inside f true
3 for each plane Pl in Frustum
4 if (CLASSIFY-POINT (Pl, Pt) <> INFRONT)
5 Inside f false
6 if (Inside)
7 return true
8 return false

The main rendering function in a portal engine would look something like this:

w RENDER-PORTAL-ENGINE
w Indata:
w Sector – The sector the viewer is in.
w ViewFrustum – The current viewing frustum.
w Outdata:
w None
w Effect:
w Renders the polygons in a portal engine. Where the world is
w represented as sectors connected by portals.

RENDER-PORTAL-ENGINE (Sector, ViewFrustum)
1 for each polygon P1 in Sector
2 if (P1 is a portal and INSIDE-FRUSTUM (ViewFrustum, P1))
3 NewFrustum f CLIP-FRUSTUM (ViewFrustum, P1)
4 NewSector f get the sector that is connected with the
 current sector through portal P1
5 RENDER-PORTAL-ENGINE (NewSector, NewFrustum)
6 else if (P1 has not been drawn yet)
7 draw P1
8 return

 20

Placing the portals

As we mentioned before, one of the big problems in a portal engine is the placement of
the portals. It is a very time consuming process to manually place the portals, not to
mention the skill required of the map designer. As with many other things, that time
could be better used in other places. So a good algorithm for automatic portal placement
is needed. A colleague of mine, Andreas Brinck, has come up with a good solution to this
problem. To use his solution a BSP-tree will have to be used.

The general idea is that each portal in the tree must be coinciding with a plane defined by
a dividing polygon in the tree. Out of each of these planes a portal polygon is created,
that portal polygon is initially a four-sided polygon that exceeds the bounding box19 of
the node it is located in. Then each portal polygon is pushed down the sub trees of the
node it is in. When a portal polygon passes through a node in one of its sub trees the
plane defined by the dividing polygon in that node clips it, it is also clipped by the
polygons in that node if the node is a leaf. If a polygon is clipped, the two resulting parts
are sent down from the top of the tree. When a portal polygon is not in need of any
clipping, it is sent down to the sub trees of the node currently visiting. This means that if
it is on the positive side of the plane it will be sent down the right sub tree, and if it is on
the negative side it will be sent down the left sub tree. But if it is coinciding with the
plane defined by the dividing polygon in the current node it will be sent down both sub
trees.

In order to be able to define the algorithm that places all the portals in the tree we need
to define how to clip a polygon, for this we need to assume there is a function called
INTERSECTION-POINT that returns a intersection point between a plane and a line
between two 3D points.

19 See the glossary for definition.

 21

w CLIP-POLYGON
w Indata:
w Clipper – The plane/polygon to clip the other polygon versus.
w Polygon – The polygon to clip.
w Outdata:
w The two resulting pieces after the clipping.
w Effect:
w Clips the polygon by the plane defined by the clipper polygon. If
w the polygon isn’t spanning the clipper one of the resulting parts
w will be an empty polygon

CLIP-POLYGON (Clipper, Polygon)
1 RightPart f {}
2 LeftPart f {}
3 for each point edge E in Polygon
4 Side1 f CLASSIFY-POINT (Clipper, E.Point1)
5 Side2 f CLASSIFY-POINT (Clipper, E.Point2)
6 if (Side1 <> Side2 and
 Side1 <> COINCIDING and
 Side2 <> COINCIDING)
7 Ip f INTERSECTION-POINT (Clipper, E)
8 if (Side1 = INFRONT)
9 RightPart f RightPart U E.Point1
10 RightPart f RightPart U Ip
11 LeftPart f LeftPart U Ip
12 LeftPart f LeftPart U E.Point2
13 if (Side1 = BEHIND)
14 LeftPart f LeftPart U E.Point1
15 LeftPart f LeftPart U Ip
16 RightPart f RightPart U Ip
17 RightPart f RightPart U E.Point2
18 else
19 if (Side1 = INFRONT or Side2 = INFRONT or
 Side1 = COINCIDING and Side2 = COINCIDING)
20 RightPart f RightPart U E.Point1
21 RightPart f RightPart U E.Point2
22 if (Side1 = BEHIND or Side2 = BEHIND)
23 LeftPart f LeftPart U E.Point1
24 LeftPart f LeftPart U E.Point2
25 return (RightPart, LeftPart)

Now we can define how to distribute the portals in a BSP-tree. The algorithm is initially
called with a portal polygon that is larger than the bounding box20 of root node of the
tree. We got the design to this function from a fellow game programmer, Andreas
Brinck, currently employed at DICE, Sweden.

20 See the glossary for definition.

 22

w PLACE-PORTALS
w Indata:
w PortalPolygon – Polygon to push down the tree
w Node – The node that we are currently visiting.
w Outdata:
w None
w Effect:
w Pushes a portal polygon down through the tree clipping when it
w needs it. The output of this function will be that each node
w contains a list of portal polygons where each portal connects
w exactly two nodes.

PLACE-PORTALS (PortalPolygon, Node)
1 if (IS-LEAF (Node))

w The portal is checked against every polygon in the node. When the
w portal polygon is spanning the plane defined by a polygon it will
w be clipped against that plane. The two resulting parts will be
w sent down from the top of the tree again.
2 for (each polygon P2 in Node)
3 IsClipped f false
4 if (CALCULATE-SIDE (P2, PortalPolygon) = SPANNING)
5 IsClipped f true
6 (RightPart, LeftPart) f CLIP-POLYGON (P2, PortalPolygon)
7 PLACE-PORTALS (RightPart, RootNode)
8 PLACE-PORTALS (LeftPart, RootNode)
9 if (not IsClipped)
10 Remove the parts of the portal polygon that coincide with
 other polygons in this node. w see description below
11 Add this node to the set of connected nodes in this
 portal polygon.
12 else
13 if (the dividing polygon of this node hasn’t been pushed down
 the tree)
14 Create a polygon P that is larger than the bounding box that
 contains all polygons in the sub trees of this node that
 lies in the same plane as the dividing polygon.
15 PLACE-PORTALS (P, Node.LeftChild)
16 PLACE-PORTALS (P, Node.RightChild)
17 Side f CALCULATE-SIDE (Node.Divider, PortalPolygon)
18 if (Side = POSITIVE)
19 (RightPart, LeftPart) f CLIP-POLYGON(P2, PortalPolygon)
20 PLACE-PORTALS (RightPart, RootNode)
21 PLACE-PORTALS (LeftPart, RootNode)
22 if (Side = POSITIVE or COINCIDING)
23 PLACE-PORTALS (PortalPolygon, Node.RightChild)
24 if (Side = NEGATIVE or COINCIDING)
25 PLACE-PORTALS (PortalPolygon, Node.LeftChild)

 23

Complexity analysis:
This function is extremely complex to analyze and since it is not our design we will not
analyze it.

To clarify line 10 we need to show what happens when we remove the coinciding parts
between the portal polygon and other polygons in the node. See the image on the next
page:

Figure 12. Removing coinciding parts.

In Figure 12 a portal polygon has reached a leaf. The dark gray areas marked as 1 is
removed during the pushing down the tree. Parts 2, 3 and 4 which is painted in light gray
is coinciding with polygons in the end node thus they are removed. The only remaining
part is the part marked as 5; this is going to be used as a portal.

The algorithm on the previous page might look very complex at first sight but it is in fact
very simple and intuitive. In the end every portal polygon will end up in exactly two
nodes. These are the two portals that will be visible from each other. On the next page
there is an example of the algorithm implemented.

 24

Figure 13. An example map for automatic portal placement.

1. Portal polygon 1 (s1) enters node n1.
 In n1 the splitting polygon will be clipped to fit

 and one part will be removed since it coincides
 with one of the polygons in the pillar. This leaves
 us with two polygons, namely p1 and p2. These
 two polygons replace s1.

2. p1 and p2 enters node s2
In node s2 p1 since it is on the positive side of s2 together with splitting polygon s2
will be sent to node n2. p2 (because it is on the negative side of s2) together with s2
will be sent further down to s3, none of them will be clipped since they do not cross
splitting polygon s2.

3. p1 and s2 enters node n2
 In n2 p1 is accepted as a portal, so it is not

 changed in node n1 either, and a part of p3 is
 removed since it coincides with a polygon in the
 pillar. Polygon s2 that was sent down to s3 in the
 previous step is now called p3.

 4. p3 and s3 enters node n3.
Since neither of p2 or p3 is clipped they are pushed downwards together with s3. p3
and s3 goes down to node n3 and p2 and s3 is pushed down to node s4.

 25

5. p3 and s3 enters node n3
 In n2 p3 is accepted as a portal and a part of s3 is

 removed by the same reasons as before. s3 is
 now named p4.

6. p2 and p4 enters node s4
None of the polygons need clipping, both p2 and p4 are sent down to n4 together
with s4. Only s4 is sent to n5.

7. p2, p4 and s4 enters node n4
 Neither of p2 or p4 need clipping, except for that

 to fit the node. But s4 is completely coinciding
 with a polygon in the pillar so it is removed.

8. Nothing enters node n5.
This node will have no portals, since it is not visible from any node and cannot see
any other node.

9. The result
 Portal p1 is in both n1 and n2.

 Portal p2 is in both n1 and n4.
 Portal p3 is in both n2 and n3.
 Portal p4 is in both n3 and n4.

This is everything we need for building a simple portal engine that will give a relatively
good frame rate.

 26

Our Solution

A portal engine has a very flexible structure that provides some nice features. When we
started designing our system we considered doing it as a portal engine, but there are some
problems with portal engines, especially all the clipping that occurs when you are drawing
the scene. So we decided to do a more static solution to avoid expensive calculations
during run-time. The idea is somewhat similar to a portal engine but instead of calculating
what needs to be drawn during run-time it is done in the pre-rendering of the map. For
each leaf in the BSP-tree a Potentially Visible Set (PVS21) is created. This PVS is the set of
leaves that is visible from the first leaf; it is not only of use during the drawing phase. It
can also be used when radiosity22 is calculated and networking is optimised for example.

The PVS is calculated during the pre-rendering of the map. In each leaf a set of visible
leaves is stored. When a scene should be drawn, first the leaf where the camera is in is
drawn, and then each leaf in the PVS is drawn. This requires that you have some kind of
algorithm that takes care of overdraw. As we have mentioned before, graphic cards of
today has hardware accelerated Z-buffers, which is enough.

Calculating the PVS

To calculate the PVS we need to do standard ray tracing between the leaves, to see if any
point in a leaf is visible from another leaf. Each leaf has to have some sample points,
between which visibility can be traced. These sample points have to be as few as possible
to avoid massive calculations. The problem is how to distribute them.

As with the portals in a portal engine the sample points can be distributed along the
splitting planes in the tree, because only the openings between the leaves have to be
checked for visibility. If a point that lies in the centre of a leaf is considered visible by a
ray that came from another leaf, the ray must have passed through an opening in the leaf.
See the next page for a clarifying picture.

Figure 14. Visibility between nodes.

21 See the glossary for description.

22 See the glossary for description.

 27

In the figure above we clearly see that for a point to be visible from another node the
visibility line must pass through an opening in the node. This is very obvious since if the
passed somewhere else the line would be obstructed, thus there would be no visibility
between the two points. Hence distributing the sample points in the openings of the
nodes is adequate. Below we have described an algorithm on how to distribute sample
points in a BSP-tree. For this function we need a couple of helper function that
distributes points in a node. These are:

• DISTRIBUTE-POINTS (Node) This function distributes points with a certain
interval along the splitting plane of the incoming node, within the boundaries of
the bounding box of the node23. It returns a set of points. Complexity: O(xy),
where x is the width of the dividing plane in the bounding box and y is the
height.

• CLEANUP-POINTS (Node, PointSet) Removes points from the point set
that are either coinciding with a polygon in the node or outside the bounding box
of the node. Complexity: O(np), where n is the number of polygons in the node
and p is the number of points in the set.

23 See the glossary for definition.

 28

w Function: DISTRIBUTE-SAMPLE-POINTS
w Indata:
w Node - The current we are visiting.
w PointSet – A set of points to distribute in the sub tree of the
w node.
w Outdata:
w None
w Effect:
w Distributes points along the splitting plane of this node. Then it
w divides the incoming points according to the splitting plane and
w removes the points that are coinciding with a polygon in this node
w or is outside the bounding box of this node. The newly created
w points will be added to both the positive and negative set. When
w a set of points reaches a leaf node the points are the sample
w points of this leaf.

DISTRIBUTE-SAMPLE-POINTS (Node, PointSet)
1 CLEANUP-POINTS (Node, PointSet)
2 if (IS-LEAF (Node))
3 Set the point set to be the sample points of this node
4 else
5 RightPart f NewPoints
6 NewPoints f DISTRIBUTE-POINTS (Node)
7 RightPart f NewPoints
8 LeftPart f NewPoints
9 for each point P in PointSet
10 Side f CLASSIFY-POINT (Node.Divider, P)
11 if (Side = COINCIDING)
12 RightPart f RightPart U P
13 LeftPart f LeftPart U P
14 if (Side = INFRONT)
15 RightPart f RightPart U P
16 if (Side = BEHIND)
17 LeftPart f LeftPart U P
18 DISTRIBUTE-SAMPLE-POINTS (Node.LeftChild, LeftPart)
19 DISTRIBUTE-SAMPLE-POINTS (Node.RightChild, RightPart)

Complexity analysis:
Each call to this function is of order O(np + xy) (see CLEANUP-POINTS and
DISTRIBUTE-POINTS). To calculate the full complexity we can formulate the following
function (we will assume that the set of points are evenly distributed in the both sets):

T(n) = 2T(n/2) + O(np + xy)

Using Masters Theorem24 we get that the order of complexity is Θ (np + xy).

24 [Cormen, Thomas H. Leiserson, Charles E. and Rivest, Ronald L.: Introduction to Algorithms]

 29

The function is first called with the root node of the tree and an empty set as parameters.
In words the function does the following. It starts by distributing points in the plane
defined by the splitting polygon in the root node of the BSP-tree. Since a plane is an
infinite shape this would generate an infinite number of sample points, so there has to be
some boundaries in which the points are distributed. These boundaries are the bounding
box of the root node.

After the points have been distributed all of them are sent down to both sub trees. When
a set of sample points enter a node, they are divided into two sets, one set for the points
on the positive side of the dividing plane in the node and one set for the points on the
negative side. The points that are exactly on the plane are put in both sets. Then points
are distributed along this nodes dividing plane with this nodes bounding box as
boundaries. The newly distributed points are put in both sets. Now the positive set is sent
down the right sub tree and the negative set is sent down the left sub tree. The process is
repeated until a set of points enters a leaf. After these operations each leaf contains a set
of sample points that are distributed in the openings of the node.

If we would ray trace between each node at this stage it would take quite long time. But if
we knew which leaves are connected to each other it would be much easier, since this
could be used to skip tracing between some leaves. It is very simple to find out which
leaves that are connected to each other; just check the sample points in each leaf against
each other leaf’s sample points. If two nodes share one sample point these two nodes are
connected to each other, because during the distribution of the sample points through
the tree every point will end in zero or two leaves. When we know which leaves are
connected, the algorithm for tracing visibility can be defined. But first we need to define
some helper functions.

In order to trace visibility some basic ray tracing is needed. BSP-trees is a very good
structure to ray trace in, since you can discard huge parts of the world, at a very little cost.
The set of functions needed for our solution is:

• POLYGON-IS-HIT (Polygon, Ray) returns whether the ray interests the
polygon or not. 25

• RAY-INTERSECTS-SOMETHING-IN-TREE (Node, Ray) returns whether the
ray intersects something in the sub tree of the node or not.

• INTERSECTS-SPHERE (Sphere, Ray) returns whether the ray interests the
sphere or not.26

• CREATE-RAY (Point1, Point2) returns the ray between the two points.

25 .[Åhs, Cons T and Bevemyr, Johan. Inlämningsuppgift I Programmeringsmetodik 2]

26 .[Åhs, Cons T and Bevemyr, Johan. Inlämningsuppgift I Programmeringsmetodik 2]

 30

RAY-INTERSECTS-SOMETHING-IN-TREE is the most interesting function of those
above, since it shows some of the advantages with BSP-trees, and how BSP-trees can be
used to optimize ordinary ray tracing. This is a recursive function that first is applied to
the root node of the tree. The algorithm is formulated as follows:

w RAY-INTERSECTS-SOMETHING-IN-TREE
w Indata:
w Node – The node to trace through
w Ray – The ray to test for intersection.
w Outdata:
w Whether the ray intersected something or not.
w Effect:
w Checks if the ray intersects something in this node or any of this
w node’s sub trees.

RAY-INTERSECTS-SOMETHING-IN-TREE (Node, Ray)
1 for each polygon P in Node
2 POLYGON-IS-HIT (P, Ray)
3 startSide f CLASSIFY-POINT (Ray.StartPoint, Node.Divider)
4 endSide f CLASSIFY-POINT (Node.EndPoint, Node.Divider)
w If the ray spans the splitting plane of this node or if the ray is
w coinciding with the plane, send it down to both children
5 if ((startSide = COINCIDING and endSide = COINCIDING) or
 startSide <> endSide and startSide <> COINCIDING and
 endSide <> COINCIDING)
6 if (RAY-INTERSECTS-SOMETHING-IN-TREE (Node.LeftChild, Ray))
7 return true
8 if (RAY-INTERSECTS-SOMETHING-IN-TREE (Node.RightChild, Ray))
9 return true
w If the ray is only on the positive side of the splitting plane
w send the ray down the right child. The or in the if statement is
w because one of the points might be coinciding with the plane.
10 if (startSide = INFRONT or endSide = INFRONT)
11 if(RAY-INTERSECTS-SOMETHING-IN-TREE (Node.RightChild, Ray))
12 return true
w If the ray is only on the positive side of the splitting plane
w send the ray down the right child. The or in the if statement is
w because one of the points might be coinciding with the plane.
13 if (startSide = BEHIND or endSide = BEHIND)
14 if (RAY-INTERSECTS-SOMETHING-IN-TREE (Node.LeftChild, Ray))
15 return true
w There was no intersection anywhere, pass that upwards
16 return false

Complexity analysis:
Worst case is that the ray passes through exactly every node in the tree in which case it
has to be tested against every single polygon. Giving us an order of O(n), where n is the
number of polygons in the tree. Typically a ray will not pass through every node in the
tree, thus reducing the number of polygons to check versus. The best case is if the ray is
limited to only one node, in which case the order of the function will be somewhere
around O(lg n), depending on the structure of the tree.

 31

w CHECK-VISIBILITY
w Indata:
w Node1 – The starting node
w Node2 – The end node.
w Outdata:
w Whether Node2 is visible from node 1 or not.
w Effect:
w Traces between the sample points in the both leaves to see if
w there is visibility between the two nodes.

CHECK-VISIBILITY (Node1, Node2)
1 Visible f false
2 for each sample point P1 in Node1
3 for each sample point P2 in Node2
4 Ray f CREATE-RAY (P1, P2)
5 if(not RAY-INTERSECTS-SOMETHING-IN-TREE(Node1.Tree.RootNode,
 Ray)
6 Visible f true
7 return Visible

Complexity analysis:
The function CHECK-VISIBILITY is computationally extremely expensive. When we
trace between to leaves between which there is no visibility, a trace from every sample
point in node 1 to every sample point in node 2 has to be done. In worst case each of
these traces has to be checked towards every polygon in the tree, hence the function
would be O(s1 s2 p), where s1 is the number of sample points in node 1, s2 is the number
of sample points in node 2 and p is the number of polygons in the tree. Generally the
behavior is much better, closer to O(s1 s2 lg p) because of the reduction of polygons that
are needed to check versus in the ray tracing through the tree.

 32

w TRACE-VISIBILITY
w Indata:
w Tree – The BSP-tree to trace visibility in.
w Outdata :
w None
w Effect:
w For each leaf in the tree it traces visibility to that leaf’s
w connected nodes. Every node that is found visible is added to the
w PVS of that node. When a visible leaf is found we have to trace
w for visibility to the visible nodes connected nodes.

TRACE-VISIBILITY (Tree)
1 for (each leaf L in Tree)
2 for (each leaf C that is connected to L)
3 Add C to L’s PVS
4 for (each leaf L1 in Tree)
5 while (there exist a leaf L2 in L’s PVS which’s connected nodes
 hasn’t been checked for visibility yet)
5 for (each leaf C that is connected to L2)
6 if (C isn’t in L1’s PVS already and
 CHECK-VISIBILITY (L1, C))
7 Add C to L1’s PVS
7 Add L1 to C’s PVS

Complexity analysis:
If we would not draw usage of the optimization that the connected leaves strategy gives
us we would need to trace visibility between each leaf hence O(n2), where n is the
number of leaves in the tree. It is very hard to give an approximation of how much the
strategy speeds up the process since it is very much dependent of how the level is
constructed. In a level where each leaf is visible from every other leaf it wouldn’t
optimize anything, while a level where only one or two leaves is visible from every other
leaf it would optimize a great deal, almost down to O(n).

The structure that is generated now will discard large amounts of polygons each frame in
a good map. A good map is built considering the visibility aspect, meaning that sight-
blocking objects should be inserted, such as walls that prevent sight. If a map contains
large room with enormous amounts of detail there is nothing our engine (or for that
matter a portal engine) can do to remove hidden surfaces. In those bad cases there is
another technique can be used to remove polygons; it is called level of detail (LOD27).

27 See glossary for definition

 33

Static Objects

Consider a map that consists of a sphere that lies in the middle of a box. When we try to
render a BSP-tree from this map we would end up with a terrible amount of nodes, and
great number of splitted polygons, since each of the polygons in the sphere would end up
in separate leaves. So if the sphere consists of 200 polygons, a simple scene as this would
render a BSP-tree of 200 leaves. A tree with such depth (in the mentioned case the depth
would be as much as 200) would be very cumbersome during run time, not to mention
all the extra polygons created because of the splitting. Certainly there is a need of taking
care of such cases.

To solve this problem the map designer chooses which objects are defining the geometry
of the map, in the example above the box would be such an object. The rest of the
objects are classified as static objects, these are objects that will not be used to render the
BSP-tree or during the visibility testing, but they will cast shadows during the lightning
phase of the map. Each of the static objects will be added to the BSP-tree when the
visibility calculations are done. This is done by taking each polygon in a static object and
pushing it down the tree. The algorithm that pushes a polygon down the tree will need
further description. It looks like this:

w PUSH-POLYGON
w Indata:
w Node – The node the polygon is currently in
w Polygon – The polygon to push down
w Outdata :
w None
w Effect:
w Pushes the polygon down through the tree. If the polygon at some
w point spans the dividing plane of a node it must be
w clipped. The resulting parts will be pushed downwards in the tree.
w When a polygon enters a leaf it will be added to the set of
w polygons in that leaf.

PUSH-POLYGON (Node, Polygon)
1 if (IS-LEAF (Node))
2 Node.PolygonSet f Node.PolygonSet U Polygon
3 else
4 Value f CALCULATE-SIDE (Node.Divider, Polygon)
5 if (Value = INFRONT or Value = SPANNING)
6 PUSH-POLYGON (Node.RightChild, Polygon)
7 else if (Value = BEHIND)
8 PUSH-POLYGON (Node.LeftChild, Polygon)
9 else if (Value = SPANNING)
10 Split_Polygon28 (P1, Divider, Front, Back)
11 PUSH-POLYGON (Node.RightChild, Front)
12 PUSH-POLYGON (Node.LeftChild, Front)

28 [Silicon Graphics. BSP Tree Frequently Asked Questions (FAQ)]

 34

PUSH-POLYGON is a neat recursive function that adds a polygon to the tree. The
function will be called once for every polygon in every static object together with the root
node of the tree to add the object to.

After this process our leaves are no longer convex sets, this will render some problems
when doing collision detection, which will be described in the chapter Physics in BSP-
trees.

Related reading:
[Hoff III, Kenneth E. Faster 3D Game Graphics by Not Drawing What Is Not Seen]
[Tyberghein, Jorrit. The Portal Technique for Real-time 3D Engines]
[Bikker, Jacco. Building a 3D Portal Engine]
[Nuydens, Tom. 3D Engine Column, Delphi3D]
[Chalfin, Alex. Cells and Portals]
[Hoff, Kenny. The Warnock Area Subdivision Algorithm for Hidden Surface Removal]

 35

C h a p t e r 4

RADIOSITY

Background

The original idea for radiosity was formulated by a set of writers called Goral, Torrance,
Battaile & Greenberg.29 They suggested that radiosity would simulate energy transference
between diffuse surfaces. That is surfaces that reflect light equally in all directions, as
opposite to shiny surfaces. The result of such a simulation would give a view independent
result, meaning that the illumination on surface would look the same from all viewing
angles. This is very well suited for 3D games since the calculations only needs to be done
once, during the pre rendering of the map.30

We will only give a quick brief in how the radiosity algorithm works and focus on how
BSP-trees can be used to optimize the calculations. For more knowledge about the
algorithm we suggest that you read some of the related reading in this chapter.

The radiosity algorithm is designed so that the lightning of a scene will be smooth and
natural. If we would use a straightforward lightning model where each light sends out
rays to the world and illuminates it without any further reflecting of light, shadows would
we be very sharp and things would look very unnatural. To use the radiosity algorithm
the world has to be divided into patches, where each patch represent a small part of the
world. Each of these patches has an initial energy level, normally zero if it is not an
emitting source such as lights, glowing walls or something like that.

There are several ways of distributing energy over the world. We chose to use so called
iterative radiosity. This means that we start by sending out energy from the patch with
the highest level of unsent energy in the scene, after which that patch unsent energy is set
to zero. This process is repeated until it doesn’t exist a patch which as energy above a
certain threshold value.

When sending out energy from one patch (j) to another (i) the following formula is used:

Bi = Bi + Bj * Fij * Ai / Aj

Bi = the level of energy level of patch I Bj = the level of energy level of patch j
Fij = form factor between patches i and j (described later) Ai = area of patch i
Aj = area of patch j

29 [Goral, Cindy M., Torrance, Kenneth E., Greenberg, Donald P., Battaile , Bennett. Modelling the interaction of light between

diffuse surfaces]

30 [Tettle, Paul. Radiosity in English]

 36

In the formula above form factor needs further description.

Fij = (cos θi ∗ cos θj) / d2 * Hij

Fij = form factor between patches i and j θI, θj = angles between the normal of the patch

and the ray between the to patches
d = Distance between the two patches Hij = Visibility between the two patches. If

only one ray is traced between the two patches
this is 0 or 1. Typically more than ray is used to
get better approximations since patches are not
just single points, but areas.

As you see above it is extremely expensive to do the radiosity calculations on a scene.
This function is of order O(n3) where n is the number of patches in the scene. Since you
for every patch will send at least one ray to every other patch in the scene, thus tracing
through the scene potentially towards every polygon (it is safe to assume that the number
of patches in the scene is greater than the number of polygons). The H (visibility) part of
the form factor is the most expensive part to calculate and it is here we can draw usage of
the strengths in a BSP-tree.

Radiosity in BSP-trees

Before the actual lightning of the scene can be calculated the surfaces has to be
subdivided into patches. One idea is that the patches is of a certain size from the
beginning and when the energy is calculated in that patch, it could be divided into smaller
patches if the energy varies too much over the patch. Due to lack of time we discarded
this idea and continued on what we thought was more important, namely using the BSP-
tree to optimize the calculations.

The creation of the patches turned out to be quite a challenging problem, but it is not
related to the BSP-trees nor can it draw any use of the BSP-tree, so we will not go further
into that.

In the original idea of radiosity each light source in the scene should be considered as one
or several patches. We chose to do it another way. Each light source is stored in the BSP-
leaf it is located in. The first thing that happens is that each light sends out its energy to
all patches. When this is done the radiosity calculations could be ended and the scene
would look quite good. To make it look even better we used a technique called
progressive refinement31 slightly modified. In every iteration of the refinement, the patch
with highest energy in each of the leaves will reflect its energy to all other patches. This
will result the energy spreading from the heavily lighted patches to the patches in
shadows. As in real life, where nothing is really black since everything reflects light more
or less.

31 [Nuydens, Tom. 3D Engine Column, Delphi3D]

 37

Because of the expensive nature of the radiosity calculations we need to do some
optimizations. Using the PVS that was built during the rendering of the BSP- tree when
choosing which patches should receive energy can cut a lot of unnecessary calculations.
The ray tracing is performed in the same way as when the PVS was calculated.

Our version of the algorithm for distribution of energy through the scene is as follows:

w RADIOSITY
w Indata:
w Tree – Tree to apply the radiosity in
w Outdata:
w None
w Effect:
w Sends energy between the patches in the scene.

RADIOSITY (Tree)
1 for(each leaf L in Tree)
2 for(each light S in L)
3 for(each leaf V that is in L’s PVS)
4 Send S’s energy to the patches in V
w At this stage we chose to do so that the level designer can at any
w point check how the scene looks and break the energy sending when
w he feels it looks good enough
5 while(not looks good enough)
6 for(each leaf L in Tree)
7 for(each leaf V that is in L’s PVS)
8 Send energy from the patch with the most unsent energy in L
 to all patches in V.

Complexity analysis:
This is a real killer in computational cost. The worst case is that every ray has to be
checked versus every polygon in the scene, which is of order O(n3) where n is the
number of patches in the tree. Fortunately the optimizations we have done will in most
cases reduce the cost a great deal, but it is almost impossible to say how much since it is
very dependent of the structure of the tree.

This gives a very speedy lightning of the scene where the advantages of BSP-trees come
in handy. Especially the work done during the ray tracing can be cut down significantly.
Since the map designer can decide when the rendering of a scene is done, by breaking the
loop at any time to see if the result is good enough. It is very easy to pre render the map a
couple of times to se an approximate of how it will look, instead of doing a costly full
render for each change.

 38

Below is a screenshot from a sample rendering done with our radiosity algorithm:

Figure 15. Sample of Radiosity.

Above is a sample of a scene rendered with our technique. The left part of the image is
the unrendered version of the scene, to the right the scene has been rendered with a light
approximately in front of the camera.

Related reading:
[Saykol, Ediz and Kirimer, Burak. Progressive Refinement of Radiosity]
[Teller, Seth. Application Challenges to Computational Geometry]
[Firebaugh, M. Three-Dimensional Graphics – Realistic Rendering]
[Nettle, Paul. Radiosity in English]
[Nuydens, Tom. 3D Engine Column, Delphi3D]

 39

C h a p t e r 5

SUMMARY OF BSP-TREE RENDERING

Now we have described the steps needed to complete the pre processing part of a BSP
engine. Following is the algorithm for rendering a scene into a BSP-tree:

w RENDER-SCENE
w Indata:
w Scene – The scene to render as a BSP-tree
w Outdata:
w A BSP-tree
w Effect:
w Renders a BSP-tree out of the information stored in the scene.

RENDER-SCENE (Scene)
w Render the BSP-tree using the objects that describes the geometry
w of the scene
1 GeometryPolygons f {}
2 for (each object O that belongs to the geometry of Scene)
3 GeometryPolygons f GeometryPolygons U O.PolygonSet
4 GENERATE-BSP-TREE (Tree.RootNode, GeometryPolygons)
w Distribute the sample points in the leaves of the tree.
5 DISTRIBUTE-SAMPLE-POINTS (Tree.RootNode, {})
6 TRACE-VISIBILITY (Tree)
7 for each object O that is a static object in Scene
8 for each polygon P in O
9 PUSH-POLYGON (Node, P)
w CREATE-PATCHES is an undefined function that needs serious
w consideration. Our solution of this problem was not good enough, so
w we choose not to present it.
10 CREATE-PATCHES (Tree)
11 RADIOSITY (Tree)

 40

Complexity

The complexity of the function calls in RENDER-SCENE is as follows:
Function Worst Case Typical Case Description
GENERATE-
BSP-TREE

O(n2 lg n) O(n2) n is the number of polygons in
the geometry of the scene

DISTRIBUTE-
SAMPLE-
POINTS

Θ (np + xy) Θ (np + xy) n is the number of polygons in
the tree, p is the number of
sample points in the tree, x and
y is the widths of the dividing
planes in the bounding boxes of
the corresponding node.

TRACE-
VISIBILITY

O(n2) O(n lg n), n is the number of polygons in
the tree

RADIOSITY O(n3) O(n2 lg n) n is the number of patches in
the tree

The column typical case is our estimation of the general running time of that algorithm,
but as we have mentioned before it varies a great deal from scene to scene. It is clear that
the dominant function is RADIOSITY which leads to that the order of the whole
rendering of a scene is O(n3) in worst case.

 41

C h a p t e r 6

PHYSICS IN BSP-TREES

One of the most intriguing problems when creating a BSP-tree based 3D-engine is
collision detection. It is not as hard to solve as to do it fast. In the vast majority of FPS
games most of the processor time is consumed when doing collision detection. Consider
an object or avatar32 (avatars is considered as an object from now on) that is moving
through the world. It has to be checked against the geometry and all other objects in the
world to see that it does not pass through or get too close to any of them. For one avatar
or object this can be done with a slow algorithm at an acceptable frame rate. The
problem gets quite more complex when several objects and avatars have to be handled
each frame. The rendering of the world to the screen has to be done only once each
frame, whilst collision detection might need to be done hundreds of times each frame,
depending on the number of objects currently moving in the world. So it is of utter most
importance that the algorithm used is very fast.

There are several decisions that are needed to make before starting to design an algorithm
to handle collisions. The objects must be encapsulated in one or more simple geometric
shapes, since it is not be possible to check every single polygon in an object for collisions
against everything and still have an acceptable frame rate. I chose to encapsulate each
object in an ellipsoid, with one collision radius in the xz-plane and one collision radius in
the y-axis. If several shapes are chosen there is a need of making them interact with each
other, which is quite a complex problem. Below is an example of how to encapsulate a
human.

Figure 16. A human encapsulated in an ellipsoid.

32 See the glossary for description.

 42

Then you need to decide what should happen when an object collides with something.
One variant is that if a collision is detected the move is prohibited and the object will stay
in the original position, this will give a very bad behavior such as bouncing against the
walls. In the figure below two moves of equal length are shown, the move to position a
will be prohibited and the object will remain in the same position, but the move to
position b will take place. This means that you can get closer to walls if you move along
them, while a move straight towards a wall will be prohibited much earlier. Hence objects
will bounce against the walls.

Figure 17. Prohibited and allowed move.

In the figure above the move to position a will not be allowed, but the move to b is
allowed. Another drawback with this idea is that the walls will behave as if they have
“glue” on them, since the objects will get stuck to them when trying to move along them.

A better way to do it is to let the objects slide against walls and other objects. This will be
a less efficient way, but will give a much smoother result. This is the way I chose to do it.

Movement of an object can be divided in to three parts:33

1. Future Position Calculation
2. Collision Detection
3. Collision Handling

For each frame an object that moves in the world has to pass each of these steps.

33 [Magarshak, Greg. Theory and Practice]

 43

Future Position Calculation

The easiest part is calculating which position the object will end up in given the original
location, speed, acceleration, direction, current friction coefficient and time passed during
that frame. We chose to use meters and seconds as units in our calculation, further more
that we chose to discard the mass of objects and assume that all objects has a mass of 1.
To simplify things we assume that the gravity always is applied downwards and that a
user only can apply force in the xz-plane. In our solution the following steps are taken to
calculate an objects future position:

1. Deduct the speed reduction caused by friction. The friction coefficient (0.0-1.0) is subtracted from
the acceleration in the xz-plane. Since the mass is assumed to be 1, no more calculations need to
be done at this point.

 Formula:
 Acceleration(x,z) -= Friction

2. Add the force input from the user to the acceleration vector in x- and z-direction. Multiplying the
force added by the user with the frame time and then adding the resulting vector in x- and z-
direction to the acceleration vector calculate this. We consider the mass to be 1, so that the force
applied is in the unit Newton/kg.

 Formula:
 Acceleration(x,z) += Force * Normalize (Direction(x,z))

3. Set gravity to the acceleration in y-direction. The traditional gravity can be used (9.82) but in
games this will be quite boring, since the falls will be too fast, so it’s quite common to use lower
gravity.

 Formula:
 Acceleration(y) = -Gravity

4. Add the acceleration to the movement vector, this is done by adding the acceleration in x and z –
direction multiplied with the frame time. It’s a good idea to limit the movement speed in x- and
z-direction so that the objects will reach a maximum speed at sometime, otherwise a constant
input of force will lead to an infinitely accelerating object.

 Formula:
 Movement = Movement + Acceleration * FrameTime

5. Now the position modifier for this frame has to be calculated. Multiply the movement vector by
the frame time and the resulting vector is the distance the object travels this frame.

 Formula:
 Distance=Movement * FrameTime

 44

6. The desired new position can now be calculated. Add the distance traveled to the current position
and the result is the position the object will end up in this frame if it passes all collision checks.

 Formula:
 NewPosition = Position + Distance

Now it is time to check if the desired position is a valid position.

Collision Detection and Collision Handling

This is one of the trickiest parts in a BSP-tree engine. There are several aspects to
consider when designing this step in a physics engine. First of all the efficiency is of great
importance, since this is the part that hogs most of the processor time. Secondly the
accuracy of the detection is of great concern, it is hard to get good accuracy without
having to reduce the efficiency of the algorithm. So there is a trade-off between
correctness and efficiency. Collision handling is not as difficult though but it is of great
concern, since this is what will give the right “feeling”, a poor and jumpy collision
handling will lower the overall appearance of any game.

This is where BSP-trees show their strength. Most engines do not use the BSP-tree to
speed up the drawing, such as portal engines, but still almost all of them have built a
BSP-tree out of the geometry. This is because of the great advantage when calculating the
collision detection, namely that it is very cheap to position the user in the BSP-tree.
When that is done, the only polygons needed to be checked; are the polygons in the
leaves the object passed through that frame.

One of the other strengths of the BSP-tree is that each leaf contains a convex set of
polygons in the original design of BSP-trees. This means that the polygons can be tried
for collision in any order. If the sets are not convex, as in our BSP-tree, the polygons
have to be checked against in order of facing. We use a term called facing value to
describe the value that tells how a polygon is directed compared to an object; this is
calculated by taking the dot product of the normalized movement vector for the object
and the normal for the polygon, which will return a value between –1 and 1. Where –1
means that the polygon is facing straight towards the movement direction of the object
and 1 means that it is facing in the same direction as the object is moving.

The order of testing is; first test the polygon that has the lowest facing value, and then
the polygons are checked in order up to the polygon with the highest facing value. Below
is a set of figures that show why the polygons must be taken in that order.

 45

Figure 18. Object move.

In the figure above the facing value is lower for polygon 1, since the dot product between
the objects movement vector and polygon 1´s normal is less than the same value for
polygon 2. So if we were to check collisions versus polygon 2 first, the result would look
as follows.

Figure 19. Incorrect collision.

In the figure above the object avoided collision with polygon 2. The end position has
been corrected so that the object does not collide with polygon 2. The feeling of the
result would be that the object passed through polygon 1.If the check for collision was
made versus polygon 1 first the result would have looked like this:

Figure 20. Correct collision

 46

In Figure 20 the movement has been corrected more accurately, since the object avoided
collision with polygon 1 first. The end position has been corrected so that the object does
not collide with polygon 1.

When the BSP-tree contains only convex set of polygons there is no need to sort the
polygons in the same node, but still the nodes have to be traversed in the same order as
they were passed through.

In order to make a fast collision detection algorithm, a cheap test that can discard a large
number of polygons from further testing is needed. This is done by calculating so called
side values. The side value is a value for the distance between the objects center and the
plane that the polygon is in; see the figure for better description.

Figure 21. Side value.

In Figure 21 the length of the dotted line is the so-called side value. The further away the
object is from the polygon, the greater the side value is.

When the side values are calculated, it can be decided whether an object could have
passed through the polygon. To calculate a side value the objects position is put into the
plane equation of the polygon, but the distance value in the plane equation is subtracted
instead of added. In this way we will have a value that is the distance between the object
and the plane. By calculating the side value for the start position and the end position we
can easily decide whether the object passed the plane or not.

There is one problem though; since we chose to represent objects with a bounding
ellipsoid the collision radius of the object in the polygon’s normal’s direction has to be
calculated. To do this, the x - and z - component of the polygons normal is multiplied
with the xz – collision radius of the object and the y– component of the polygons normal
is multiplied with the y– collision radius of the object. The length of the resulting vector
is the collision radius for the object versus that polygon. Following is a figure and a
formula to better describe the collision radius.

 47

Figure 22. Collision radius.

In the figure above the dotted line represents the effective collision radius of the object
towards the polygon. Observe that the line is perpendicular to the polygon.

CollisionRadius(Object, Polygon) =
Sqrt((Object.xzColl * Polygon.Normal.x)2 +
 (Object.yColl * Polygon.Normal.y)2 +
 (Object.xzColl * Polygon.Normal.z)2)

Now we can decide whether the object actually passed through the plane. Following is
the algorithm to perform this test, together with a helper function to calculate the
collision radius for an object in a given direction:

w CALCULATE-COLLISIONRADIUS
w Indata:
w Object – The object to get the collision radius for.
w Direction – The direction to calculate the collision radius in.
w Outdata:
w The collision radius of the object in the given direction.
w Effect:
w Calculates the objects collision radius in the given direction.

CALCULATE-COLLISIONRADIUS (Object, Direction)
1 return Sqrt((Object.xzColl * Direction.x)2 +
 (Object.yColl * Direction.y)2 +
 (Object.xzColl * Direction.z)2)

 48

w PRE-CHECK-COLLISION
w Indata:
w Object – The object to check collision for
w Polygon – The polygon to check the object towards
w Outdata:
w Whether the object passed through the plane defined by the polygon
w Effect:
w Checks if the object passed trough the plane defined by the
w polygon.

PRE-CHECK-COLLISION (Object, Polygon)
w Calculate the effective collision radius of the object towards
w this polygon.
1 CollisionRadius f CALCULATE-COLLISIONRADIUS (Object,
 Polygon.Normal)

w Calculate distance between the plane and the objects start
w position.
2 StartSide f Object.StartPosition.x * Polygon.Normal.x +
 Object.StartPosition.y * Polygon.Normal.y +
 Object.StartPosition.z * Polygon.Normal.z -
 Polygon.Distance

w Calculate distance between the plane and the objects end
w position.
3 EndSide f Object.EndPosition.x * Polygon.Normal.x +
 Object.EndPosition.y * Polygon.Normal.y +
 Object.EndPosition.z * Polygon.Normal.z -
 Polygon.Distance

w If the two points is on different sides of the plane, multiplying
w the two values will give a negative result, indicating that the
w object passed through the plane.
4 if ((StartSide – CollisionRadius) *
 (EndSide – CollisionRadius) < 0)
5 return true
6 else
7 return false

PRE-CHECK-COLLISION determines whether an object passed through the plane
defined by a polygon, but it does not consider the boundaries of the polygon. We need
further testing for the polygons that passed this test, namely a test that determines if the
object passes within the boundaries of the polygon. This test is quite expensive so the
more polygons that are discarded in the earlier stage the better. First we have to check if
the polygon is inside the cylinder created by the object’s move. See Figure 23.

 49

Figure 23. Testing if a object passes through a polygon.

In the figure above the object moves from the start location to the end location. Both
locations are on different sides of both polygons. But the cylinder (the gray area in the
figure) created by the move of the object only passes through polygon 1.

In order to perform this test, we need to calculate perpendicular planes for the polygon.
They can be calculated once and for all when a polygon is created to save time.
Perpendicular planes are planes with a normal perpendicular to the normal of the
polygon and facing inwards. There are three perpendicular planes for a triangle, one for
each edge. We have illustrated how it looks in the figure below.

Figure 24. Perpendicular planes for a triangle.

 50

Each perpendicular plane is calculated by the cross product of the direction vector of the
edge it is aligned on and the normal of the polygon, and normalizing the resulting vector.
If the result gives an outward facing normal, it is inverted. The distance of the
perpendicular planes is calculated by the dot product between the normal of the
perpendicular plane and one of the vertices on the edge the plane is aligned on. For
example the perpendicular plane between p1 and p2 in the figure is calculated as follows.

1. PerPlane.Normal = Normalize (Direction (p1, p2) x Polygon.Normal)
2. if(Perplane.Normal * p3 < 0) invert(PerPlane.Normal)
3. PerPlane.Distance = PerPlane.Normal*p2

If the object were a single a point we would only need to check it is on the positive side
of each of the perpendicular planes, thus indicating that the object is within the polygon.
But since the object has a collision radius we cannot just take the planes that are along
the edges, we need to move them outwards a bit. So each of the perpendicular planes are
moved a collision radius from the center of the polygon, calculated by deducting the
collision radius from perpendicular plane’s distance value. This will still leave us one
problem, illustrated in the following figure:

Figure 25. Moved perpendicular planes.

Obviously the planes are encapsulating a too big area. The distance between p1 and the
intersection of perpendicular plane 1 and 3 is too long. The same is true for each of the
other corners. To correct this the objects position needs too be checked so that it inside
three more perpendicular planes. Let us copy perpendicular plane 2 in the figure above
and move it to p1. Then move it the collision radius of the object further away, and
invert the normal of that plane. That corrects the problems. This is done for each the
vertices opposing plane. The figure would look like this then:

 51

Figure 26. The effective collision area of a triangle.

The gray area in the figure above is the area in which an object will be considered as
inside of the polygon. Even this area is not exactly correct, where as the corners will be a
bit too far away, but the result is good enough. Using the exact area would be much too
expensive since we would have to use an infinite number of planes in the corners of the
area. Below is figure that illustrates the correct appearance of the area.

Figure 27. The correct collision area of a triangle.

Now we can detect whether an object collides with a polygon or not. The algorithm for
doing this can shortly be put down as this:

 52

w GET-COLLIDING-POLYGON
w Indata:
w Object – The object to check collisions for
w PolygonSet – The polygons to check collisions versus
w Outdata:
w The polygon that the object collides with.
w Effect:
w Loops through all polygons in the polygon set and checks if the
w object’s movement is obstructed by a polygon or not.

GET-COLLIDING-POLYGON (Object, PolygonSet)
1 for each polygon P in PolygonSet in order of increasing facing
 value

w If the object passes through the plane defined by the polygon,
w further testing is needed.
2 if (PRE-CHECK-COLLISION (Object, P))

w Test each of the six perpendicular planes.
3 for each perpendicular plane Pl in P

w The effective collision radius the object towards the plane is
w the width of the object in the direction of the planes normal.
4 CollisionRadius f
 CALCULATE-COLLISIONRADIUS (Object, Pl.Normal)

w Move the plane backwards the collision radius of the object.
5 Pl.Distance f Pl.Distance - CollisionRadius

w Calculate distance between the plane and the objects
6 Side f Object.Position.x * Pl.Normal.x +
 Object.Position.y * Pl.Normal.y +
 Object.Position.z * Pl.Normal.z -
 Pl.Distance

w If the object is on the negative side of this plane, the object is
w not within the polygon and we can skip further testing on this
w polygon.
7 if (Side < 0)
8 goto step 1

w If we reach this point the object was within all perpendicular
w planes and we can return this polygon as the polygon the object
w collided with.
9 return P

w We couldn’t find a polygon that the object collide with so we
w return no polygon.
10 return NOPOLYGON

Complexity analysis:
Since this is a very frequently used function during run time it is of utter most importance
that it is effective. As it is now it is not effective enough, the order of the function is
dominated by the sorting of the polygons needed on line 1, using an effective sorting
algorithm such as quick sort, the order will be O(n lg n), where n is the number of

 53

polygons in the incoming set. We need to be closer n. We will have to re-write this
function later on.

Every frame GET-COLLIDING-POLYGON will be called until there is no colliding polygon
left in every node the object passes through.

Now that we can detect whether an object collides with a polygon or not, we need to
handle objects colliding with objects. This is a much simpler task and it can be done with
just a few calculations. First a direction vector between the centers of the two objects is
calculated and normalized. Then the collision radius for both objects is calculated in that
direction, in the same way as it was calculated in the polygon collision case. If the
distance between the two object’s centers is less than the sum of the two collision radii
the objects collide and collision handling needs to be done. Below is an algorithm to
determine if two objects collide.

w OBJECTS-COLLIDE
w Indata:
w Object1 – The object that moves.
w Object2 – The object to check collision towards
w Outdata:
w Whether the first object collide with the second object or not.
w Effect:
w Checks if the two objects collide.

OBJECTS-COLLIDE (Object1, Object2)

w Calculate the direction vector between the two objects
1 Direction f GET-DIRECTION (Object1.EndPosition, Object2.Position)

w Calculate the both collision radius in that direction.
2 CR1 f CALCULATE-COLLISIONRADIUS(Object1, Direction)
3 CR2 f CALCULATE-COLLISIONRADIUS(Object2, Direction)

w Calculate the distance between the two objects
4 Distance f GET-DISTANCE (Object1.EndPosition, Object2.Position)
5 if (Distance < CR1 + CR2)
6 return true
5 else
6 return false

OBJECTS-COLLIDE will be called once for every object in the nodes the moving object
passes through.

When collision between an object and a polygon or an object and another object is
detected, the end position of the moving object needs to be corrected.
In the case of collision versus a polygon, the corrected end position that is calculated with
the following formula:

EndPosition += Polygon.Normal*(CollRadius-EndSideValue)

 54

The effect of this formula will be that objects “slide” against the walls as opposite to get
stuck against walls which would be the case if the end position was set to the start
position every time a collision was detected.

In the case of collision between two objects the end position for the moving object is
corrected according to the following formula:

EndPosition += Direction * (CollRadius1 + (CollRadius2-Distance))

In the above formula, Direction is the direction between the moving object’s end
position and the other object’s current position, CollRadius1 is the moving object’s
collision radius in that direction, while CollRadius2 is the other object’s collision radius in
the direction and Distance is the distance between the end position of the moving object
and the other object’s current position.

When the position is corrected it might be that the object is moved so that it collides with
a previously passed polygon or object. So each time a collision is detected the collision
detection needs to be restarted from the beginning. This can become very expensive in
complex environments, so it is recommended to put some upper limit for the number of
iterations. When that number of iteration has passed and collisions are still detected the
end position will be set to the object’s start position.

Since sorting the polygons by facing value every time a node is checked for collision
would take much too long time, another solution is better. In every iteration: loop
through all polygons and remember the one with the lowest facing value that was in the
way for the moving object. If a collision was detected when all polygons in a leaf has
been checked against, collision handling will be done towards that polygon. Then the
loop will be restarted from the beginning. This will give that the collisions will be taken in
order of facing as was mentioned earlier in this chapter. So our re-written GET-
COLLIDING-POLYGON will look like this:

 55

w GET-COLLIDING-POLYGON
w Indata:
w Object – The object to check collisions for
w PolygonSet – The polygons to check collisions versus
w Outdata:
w The polygon that the object collides with.
w Effect:
w Loops through all polygons in the polygon set and checks if the
w object’s movement is obstructed by a polygon or not.

GET-COLLIDING-POLYGON (Object, PolygonSet)
1 LowestFacing f INFINITY
2 CollidingPolygon f NOPOLYGON
3 for each polygon P in PolygonSet

w If the object passes through the plane defined by the polygon,
w further testing is needed.
4 if (PRE-CHECK-COLLISION (Object, P))

w Test each of the six perpendicular planes.
5 for each perpendicular plane Pl in P

w The effective collision radius the object towards the plane is
w the width of the object in the direction of the planes normal.
6 CollisionRadius f
 CALCULATE-COLLISIONRADIUS(Object, Pl.Normal)

w Move the plane backwards the collision radius of the object.
7 Pl.Distance f Pl.Distance - CollisionRadius

w Calculate distance between the plane and the objects
8 Side f Object.Position.x * Pl.Normal.x +
 Object.Position.y * Pl.Normal.y +
 Object.Position.z * Pl.Normal.z -
 Pl.Distance

w If the object is on the negative side of this plane, the object is
w not within the polygon and we can skip further testing on this
w polygon.
9 if (Side < 0)
10 goto step 1

w If we reach this point the object was within all perpendicular
w planes, so if this polygon has lower facing value than the lowest
w facing value this far, we will remember this polygon.
11 FacingValue f P.Normal.x * Object.MovementDirection.x +
 P.Normal.y * Object.MovementDirection.y +
 P.Normal.z * Object.MovementDirection.z
12 if (FacingValue < LowestFacing)
13 CollidingPolygon f P
14 LowestFacing f FacingValue
w Return the remembered polygon, might be no polygon if no colliding
w polygon was found.
14 return CollidingPolygon

 56

Complexity analysis:
Now we only loop through all polygons once, so the order of this algorithm is O(n)),
where n is the number of polygons in the incoming set..

In our solution we set a maximum of 5 iterations for the polygons, but of course this is
very dependent of how complex the scene is, where a more complex scene could require
more iterations. Following on the next page is the collision loop that is done once every
frame for every moving object.

 57

w COLLISION-HANDLING
w Indata:
w Object – The moving object
w Outdata:
w None
w Effect:
w Checks the objects movement versus every polygon and object in the
w nodes the object passes through. When collision is detected, it
w will be handled.

COLLISION-HANDLING (Object)
1 PolygonSet f {}
2 for each node N the object passes through
3 PolygonSet f PolygonSet U N.PolygonSet
4 Iterations f 0
5 while (Iterations <= MAXITERATIONS)
6 Polygon f GET-COLLIDING-POLYGON (Object, N)
7 if (Polygon f NOPOLYGON)
8 goto step 14
9 CollisionRadius f
 CALCULATE-COLLISIONRADIUS(Object, Polygon.Normal)
10 EndSide f Object.EndPosition.x * Polygon.Normal.x +
 Object.EndPosition.y * Polygon.Normal.y +
 Object.EndPosition.z * Polygon.Normal.z -
 Polygon.Distance

w Move the end position of the object so that it will not collide.
11 Object.EndPosition f Object.EndPosition + Polygon.Normal *
 (CollisionRadius - EndSide)
12 Iterations f Iterations + 1

w The only way to reach this step is if there were more collisions
w than then maximum number of iterations. This move is considered
w illegal so we set the end position to be the original position.
13 Object.EndPosition f Object.StartPosition
14 for each object O in the nodes the object passes through
15 if (OBJECTS-COLLIDE (Object, 0))

w Calculate the direction vector between the two objects
16 Direction f GET-DIRECTION (Object1.EndPosition,
 Object2.Position)

w Calculate the both collision radius in that direction.
17 CR1 f CALCULATE-COLLISIONRADIUS (Object1, Direction)
18 CR2 f CALCULATE-COLLISIONRADIUS (Object2, Direction)

w Move the end position of the object so that it will not collide.
19 Object.EndPosition f Object.EndPosition + Direction *
 (CollRadius1 + (CollRadius2-Distance))

 58

Complexity analysis:
The collision loop is of order O(i n), where n is the number of polygons in the nodes the
object passes through and i is the maximal number of iterations (which could vary).

There is at least one obvious optimization that is very easy to implement, that is to only
calculate the collision radii once per polygon-object and object-object pair. But we chose
to present this way, unoptimized, out of clarity reasons. Probably there are some more
obvious things that can speed up the process, but we leave them to you.

Related reading:
[Nuydens, Tom. 3D Engine Column, Delphi3D]
[Magarshak, Greg. Theory and Practice]
[Lin, Ming C. Fast Collision Detection for Interactive games]
[UNC Collide Research Group, Collision Detection]
[Bikker, Jacco. Building a 3D Portal Engine]

 59

C h a p t e r 7

NETWORK OPTIMIZATION USING BSP-TREES

Today we have passed the limit where the computers processing and graphical ability can
be considered as a great limitation. Instead networking is where the troubles exist, as
many users still are connected with modems. To be able to reach as many people as
possible, multiplayer games must be designed to run on a modem connection. To
illustrate why this can be a problem, consider the following problem. We have a
multiplayer game that runs on a server designed to take care of 15 clients34. Let’s say that
the server updates the world 20 times per second (called ticks35). This means that if all
clients were to get information about all other players every update there would be a quite
substantial amount of data to transfer to each client every second. To be able to count
how much a client will receive each frame we need to know how much information
about each user that is sent every frame. If we consider the minimum case there is a
vector of movement, a position vector, and a rotation vector that each consists of 3
floats, which take 4 bytes of memory. Then we would probably have some packet
overhead, let’s say six byte. Then every packet would be 3*3*4+6= 42 byte. Now every
client will have to get information about every other client 20 times per second. Giving us
that every client will receive 20*15*42 = 12600 bytes every second. Since a 55.6 modem
only can receive 55600/8 = 6950 bytes/second at optimal conditions (which never
happens) this will clearly overflow all clients that are using modems. Not to mention the
bandwidth needed on the server. It is quite obvious that these numbers need to be cut
down quite a bit.

Again the structure of the BSP-tree comes in handy. As with drawing, where the principle
is “What is not seen, is not drawn”, the network can be optimized by only sending
information about the visible objects to the user. This can be done with a portal engine,
by sending information about the objects that are visible to each user. When you have a
static PVS you just send the objects that are in the visible leaves from the leaf the user is
currently occupying. In good maps this will reduce the amount of data sent significantly.

Related reading:
[Sweeney, Tim. Unreal Networking Architecture]

34 See the glossary for description.

35 [Sweeney, Tim.Unreal Networking Architecture]

 60

C h a p t e r 8

FUTURE WORK

There are millions of things that can be done to improve the solutions presented in this
report. Some examples are improving the collision detection algorithms, better removal
of none visible objects and the creation of a portal engine with a static PVS. Other things
are not even mentioned in this report such as prediction, which have not even been
implemented.

Even though the collision detection algorithms provided in this report is giving
satisfactory performance, there is still some things that can be done better. Perhaps a box
is a better bounding form for an object. The drawback with a bounding box is that there
are much more calculations needed than with a bounding sphere, but the visible result
would be better.

Objects are often more complex than the geometry of the world, i.e. consists of more
polygons. Hence, it would be good to remove as many non-visible objects as possible. In
our solution all objects that are in a visible leaf are drawn. If a fast algorithm could be
developed to remove hidden objects, it would improve performance. It is very tricky
though to create an algorithm to remove objects that is cheaper than to draw them to the
screen.

If you create a portal engine with a static PVS, you would get all the benefits from a
portal engine such as mirrors and easy removal of objects, but you could draw usage of
the strengths of a static PVS, meaning that it is cheap to find out which sectors to draw
and cheap lightning of the world.

Prediction is an important thing in multiplayer games. The goal is that the clients should
have as correct image of the scene as possible, i.e. not differ too much from the server. In
our solution the objects are simply put on the position received from the server. This
results in that if it takes 200 ms for the data to get from the server to the client, the image
the client will have of the world is 200 ms seconds old. If you could predict where the
object is now or at least at a later stage than the server data, based on previous movement
of the object, the client would get a much more accurate view of the world.

 61

C h a p t e r 9

CONCLUSIONS

BSP-trees are very useful structures that have many advantages when it comes to creating
a 3D-engine. Even though the original purpose of usage, i.e. sorting the polygons to be
able to draw them in correct order onto the screen, is obsolete, many areas of usage
remain, such as faster collision detection, removal of hidden surfaces and network
optimisation. There is still space for much improvement in the area though. The
following is some of the advantages and disadvantages with BSP-trees.

Advantages

• Fast collision detection, a big part of the map can be discarded easily since it is
cheap to position the object into a leaf. When that is done only the polygons in
that leaf is needed to check for collision.

• With a PVS it is very easy to remove not visible parts of the map.

• Can be used to optimise networking.

• Can be used to optimise lightning calculations of the map.

Disadvantages

• BSP trees are really only suitable for static worlds. It is possible to add and
remove polygons in the world, but to do this you need to recompute part of the
BSP tree. Using local BSP trees, which are intersected, with the main BSP tree is
also a possible optimization technique, but the fact remains that BSP trees are
better suited for static worlds.36

• To make the most efficient use of a BSP tree, you still need to add a PVS
(Potentially Visible Set) or other similar techniques. If you don't, you will
probably end up considering too many polygons (especially with large worlds). 29

• The BSP tree technique is rather complicated. 29

36 [Tyberghein, Jorrit. The Portal Technique for Real-time 3D Engines]

 62

The BSP-trees will probably still exist in the gaming industry the next five to ten years,
but hopefully somebody will invent a smarter more dynamic structure with the same
advantages as the BSP-trees have. One of the biggest problems with BSP-trees is the
complexity of them. There are too many parts needed to make everything work
efficiently, so an ideal solution must be much more simple and intuitive.

An alternative to BSP-trees could be some kind of scene-graph, where everything is an
object that derives from the same parent. Each object knows in which object it is located.
All objects know how they should be displayed, how collision takes place inside of them,
which neighbors they have, where you can see out of them. This would make it much
easier to insert and remove parts of the world without having to re-render the whole
world. It would also be a much more elegant way to solve the complexity that occurs
with BSP-trees, since no object type needs to know anything about any other object
types. They all implement the same interface and the only communication between the
objects would go through that interface.

 63

APPENDIX

Here are some screenshots from the product released with the developed technology:

 64

BIBLIOGRAPHY

Feldman, Mark. Introduction to Binary
Space Partioning Trees,
http://www.geocities.com/Silic
onValley/2151/bsp.html, 1997.

Unknown Author, Basic Math FAQ,
 http://www.cc.gatech.edu/gv

u/multimedia/nsfmmedia/gra
phics/elabor/math/mathfaq.h
tml

Hoff III, Kenneth E. Faster 3D

Game Graphics by Not Drawing
What Is Not Seen,
http://www.cs.unc.edu/~hoff
/papers/vfc/vfc.html, ACM
Crossroads, 1997.

Tyberghein, Jorrit. The Portal

Technique for Real-time 3D Engines,
 http://crystal.linuxgames.com/

docs/portal.html, 1998.

Bikker, Jacco. Building a 3D Portal

Engine,
http://www.flipcode.com/port
al/, 1999.

Royer, Dan. Dan’s Programming

Tutorials,
http://members.home.com/dr
oyer/tutorials/, 1997-1999.

Åhs, Cons T and Bevemyr, Johan.
Inlämningsuppgift I
Programmeringsmetodik 2, 2000.

Nettle, Paul. Radiosity in English,

http://www.flipcode.com/tuto
rials/tut_rad.htm,1999.

Nuydens, Tom. 3D Engine Column,
Delphi3D,
http://www.gamedeveloper.org
/delphi3d/3de.shtml, 2000.

Firebaugh, M. Three-Dimensional
Graphics – Realistic Rendering,
http://www.uwp.edu/academic
/computer.science/morris.csci/
CS.320/Week.10/Ch10.html.

Teller, Seth. Application Challenges to

Computational Geometry,
http://graphics.lcs.mit.edu/~set
h/pubs/taskforce/paragraph3_3
_0_0_1.html, 1996.

Saykol, Ediz and Kirimer, Burak.

Progressive Refinement of Radiosity,
http://www.ug.bcc.bilkent.edu.tr
/~saykol/radiosity/sld001.htm.

Mr. Meanie. Binary Space Partitioning

Trees,
http://easyweb.easynet.co.uk/~
mrmeanie/bsp/bsp.htm.

Chalfin, Alex. Cells and Portals,

http://www.netmagic.net/~acha
lfin/Graphics/portal.htm, 2000.

Magarshak, Greg. Theory and Practice,

http://www.flipcode.com/tpract
ice/, 2000.

Cormen, Thomas H. Leiserson,
Charles E. and Rivest, Ronald L.:
Introduction to Algorithms (MIT
Press, 1990)

 2

Hoff, Kenny. The Warnock Area
Subdivision Algorithm
for Hidden Surface Removal,
http://www.cs.unc.edu/~hoff/t
echrep/warnock.html, 1996.

Southwick, Andrew R. Quake
Rendering Tutorial,
http://www.quakerant.com/q
w/rendering.html, 1998.

Warren,Mike. Useful Algorithms,
http://www.quakeworld.com/
mikebot/useful-
algorithms.html, 1998.

Lin, Ming C. Fast Collision Detection
for Interactive games, Game
Developer Conference 1999,
Conference Proceedings, 1999.

UNC Collide Research Group,
Collision Detection,
http://www.cs.unc.edu/~geo
m/collide/index.shtml, 2000.

Sobey, Anthony. Software Engineering,
http://louisa.levels.unisa.edu.a
u/1996/se/project/proj_bak.h
tm - HD_NM_48, 1996.

Sunsted, Tod. 3D computer graphics:
Moving from wire-frame drawings to
solid, shaded models,
http://www.javaworld.com/ja
vaworld/jw-07-1997/jw-07-
howto.html, 2001.

Sweeney, Tim.Unreal Networking
Architecture,
http://unreal.epicgames.com/
Network.htm,1999.

Goral, Cindy M., Torrance,
Kenneth E., Greenberg,
Donald P., Battaile , Bennett.
Modelling the interaction of light
between diffuse surfaces, Computer
Graphics (ACM SIGGRAPH
'84 Proceedings, 1984.

Shumacker, R., Brand, R., Gilliland,
M., Sharp, W. Study for Applying
Computer-Generated Images to
Visual Simulation. AFHRL-TR-
69-14. U.S. Air Force Human
Resources Laboratory, 1969.

Silicon Graphics. BSP Tree Frequently
Asked Questions (FAQ),
http://reality.sgi.com.com/
cgi-bin/bspfaq/bsp?8.txt,
1997.

Luebke, David P., Georges, Chris.
Portals and Mirrors,
http://www.cs.virginia.edu/~l
uebke/publications/portals.ht
ml,1998.

Bittner, Jiri, Havran, Vlastimil,
Slavik, Pavel. Hierarchical
Visibility Culling with Occlusion
Trees,
http://sgi.felk.cvut.cz/~bittner
/publications/cgi98-copy.pdf,
1998.

Zielinski, Michal. Radiosity: physical
bases of this computer graphics
method,
http://www.phys.uni.torun.pl/
~mzielin/radio_htm.html,
2000.

 4

